第 30 回

殺菌剤耐性菌研究会シンポジウム 講 演 要 旨 集

Abstracts of the 30th Symposium of Research Committee on Fungicide Resistance

> **2021**年3月23日 オンライン開催

March 23, 2021

日本植物病理学会

The Phytopathological Society of Japan

日本植物病理学会

第30回殺菌剤耐性菌研究会シンポジウム

《プログラム》

- 10:00 開 会
- 10:05-10:40 千葉県における DMI 剤耐性ナシ黒星病菌の発生リスク軽減に向けた 取り組み

青木 由(千葉県農林総合研究センター)

- 10:40-11:20 長野県における薬剤耐性リンゴ黒星病菌の発生と対策江口 直樹・近藤 賢一(長野県果樹試験場 環境部)
- 11:20-11:55 三重県における灰色かび病菌の薬剤感受性検定体制の構築 川上 拓(三重県農業研究所)
- 11:55-12:10 質疑応答
- 12:10-13:05 <昼食休憩>
- 13:05-13:15 研究会会計および幹事会活動報告
- 13:15-13:50 ピーマンうどんこ病に対する防除体系と本病原菌の QoI 剤と SDHI 剤 に対する感受性検定 宮本 拓也(茨城県農業総合センター園芸研究所)
- 13:50-14:25 新規 QoI 殺菌剤メチルテトラプロールの発見 交差耐性回避を目指した 創農薬 松崎 雄一(住友化学株式会社 健康・農業関連事業研究所

研究グループ(生物))

- 14:25-15:00 米国における耐性菌研究の現状 石井 英夫(筑波大学)
- 15:00-15:15 質疑応答
- 15:15 閉 会

千葉県における DMI 剤耐性ナシ黒星病菌の発生リスク軽減に向けた取り組み

Approaches to reduce DMI-resistance occurrence risk in Japanese pear scab, in Chiba Prefecture.

千葉県農林総合研究センター

青木由

Yoshimi Aoki, Chiba Prefectural Agriculture and Forestry Research Center, 180-1 Okanezawa, Midori, Chiba 266-0014, Japan

Abstract

Japanese pear (*Pyrus pyrifolia* var. *culta*) is one of the important fruits in Chiba Prefecture. Japanese pear scabs by *Venturia nashicola* are the most serious disease in Japanese pear. Sterol Demethylation Inhibitors (DMIs) have long been effective in chemical control of pear scab.

Recently, however, the existence of DMI-resistant scab isolates were newly reported in Japan. Though DMI-resistant isolates have not been observed in Chiba Prefecture, but DMI-resistance occurrence risk has been remained high. This paper describes the concept of the disease control system and approaches to reduce DMI-resistance occurrence risk in pear scab, in Chiba Prefecture.

1. はじめに

千葉県における 2018 年のニホンナシの収穫量は約 30,400 t で全国第一位となっている。本県で栽培されている主な品種は「幸水」と「豊水」であり、これらの品種の最も重要な地上部病害はナシ黒 星病(*Venturia nashicola*)である(梅本、1993)。

ナシ黒星病の薬剤防除には、浸透移行性を有する治療剤であるエルゴステロール生合成阻害剤(以下、DMI剤)が長らく卓効を示してきたが、すでに国内でDMI剤耐性のナシ黒星病菌が確認されている(菊原・石井、2008)。リンゴ黒星病(*Venturia inaequalis*)においても国内でDMI剤耐性菌の発生が確認され、甚大な被害をもたらした(平山ら、2017a)。また、QoI剤の耐性菌については、国内外でリンゴ黒星病で報告されている他(Zheng *et al.*, 2000; Sallato *et al.*, 2006; 平山ら、2017b)、国内でリンゴ炭疽病やナシ炭疽病でも確認されている(渡邉、2012;野口, 2015;赤平・花岡、2013)。

本県では、2006 年以降変動はあるものの黒星病は多発傾向にあり、生産現場では、臨機に薬剤散 布を追加する事例が増加している。2012 年時点において調査された範囲では、本県ではナシ黒星病 の DMI 剤耐性菌は確認されていない(大谷ら、2006;梅本ら、2012)。しかし、菌密度が高い状態で は、耐性菌の割合が低い値であったとしても、耐性菌の絶対量が多くなり、薬剤の防除効果の低下や 耐性菌の発生が助長される可能性があることから(田代ら、2008)、本県の耐性菌の発生リスクは高 い状態にあると考えられる。DMI 剤はナシ黒星病の基幹防除剤であり、耐性菌の発達の抑制・遅延が 重要である。本稿では本県における病害防除体系の考え方と DMI 剤耐性ナシ黒星病菌の発生リスク 軽減に向けた従来からの取り組みと新たな取り組みの試験状況について報告する。

2. 千葉県におけるナシ病害防除体系について

病害防除は、予防剤のローテーション散布による予防が基本となる。ナシは永年作物のため、宿主 が同一の場所に長期間存在している状況である。このような場合、病害虫もナシ園やその周辺に定着 し、ある程度決まった時期に決まった病害虫が発生するようになったため、防除暦による防除体系が 発達したと考えられる。本県では「農作物病害虫雑草防除指針」(以下、防除指針)を作成して、年間 を通じた病害虫の防除体系を指導している(表1)。

本県で栽培されているナシの主要品種は「幸水」及び「豊水」であり、本県の防除指針においても 主対象としている。防除指針の中で防除対象となる病害は多数存在するが、当該品種にとって最も重 要な地上部病害である黒星病の防除を中心に編成されている。他の病害は、通常は黒星病と同時に防 除されるが、当該病害発生時には臨機防除を行うこととしている。黒星病の防除では、ナシ樹が黒星 病に対して感受性の高い時期(4月上旬~下旬及び6月中旬~7月中旬)に効果の高い薬剤を使用す ることとしており、これらの時期には治療剤(浸達性の高い殺菌剤であり、発病後に効果があるわけ でない)として本病に対して卓効のある DMI剤、QoI剤及び SDHI剤を用いている。しかし、これ らの系統の薬剤は耐性菌発生の恐れがあることから、千葉県の防除指針では、連用はせずに年間の散 布回数の上限は、DMI剤は3回、QoI剤は2回及び SDHIは1回を目安としている。さらに治療剤 であるこれらの系統の薬剤については、予防剤との混用を原則としている。なお、秋季から休眠期に おいては、治療剤は用いないこととしている。また、防除指針の編成においては、登録内容や防除効 果だけでなく、他の病害に対する防除効果、薬害の事例、混用の適否、散布者のかぶれの問題、ミツ バチ・受粉への影響、ナシ果実の汚れ及びコストなどの多様な事項を網羅的に勘案し、作成している。

時期	用 基幹防除	基幹防除の代替剤	臨機防除(追加散布)	
10月 日	中旬 キャプタン・有機銅	ジチアノン(炭疽病多発園)		
10月 🗆	下旬 キャプタン・有機銅	ジチアノン(炭疽病多発園)		
11月 」	上旬 キャプタン・有機銅	ジチアノン(炭疽病多発園)		
3月「	中旬		キャプタン(黒星病)	
3月 7	下旬 チウラム or ジチアノン		ホセチル (疫病)	
4月」	上旬 イミヘ゛ンコナソ゛ール+チウラム			
F	中旬		チウラム(黒星病)	
٦	下旬 ジフェノコナゾール+チウラム		ホセチル (疫病)	
5月」	上旬 チウラム+ピリペンカルブ		ベノミル(心腐れ症)	
q	中旬 イミノクタジンアルベシル酸塩		イミノクタジンアルベシル酸塩 +シプロジニル(黒星病)	
Г	下旬 有機銅	ジチアノン(炭疽病多発園)		
6月」	上旬 イミノクタジンアルベシル酸塩			
4	中旬 フルアジナム	キャプタン・ベノミル (かぶれが問題となる場合)		
Г	下旬 クレソキシムメチル+キャフ゜タン			
7月」	上旬 ヘキサコナゾール+イミノクタジンアルベシル酸塩	フェンブコナゾール+イミノクタジンアルベシル酸塩 (黒星病のみ防除対象の場合)		
4	中旬 ペンチオピラド+キャプタン+展着剤	ピラジフルミド+キャプタン+展着剤 (輪紋病多発園)		
Г	下旬		チオファネートメチル(輪紋病)	
8月」	上旬			
	中旬		クレソキシムメチル(炭疽病) ポリオキシン(うどんこ病)	

表1 千葉県のナシ防除指針(令和2年度、殺菌剤(散布)のみ抜粋)

3. 千葉県における DMI 剤耐性ナシ黒星病菌の発生リスク軽減に向けた取り組み

本県では、耕種的防除の徹底、薬剤の系統や耐性菌リスクの情報の把握及びその提示、及び予防剤 を中心とした防除体系の構築等により耐性菌の発生リスクの軽減に努めてきた(金子、2016a)。また、 近年は特に県内主要産地における DMI 剤耐性黒星病菌の発生実態の把握と DMI 剤の使用回数を削 減した新たな防除体系の構築に向けた試験を実施している。ここでは、具体的に本県の取り組みにつ いて説明する。

(1) 耕種的防除の徹底

特定の薬剤に対する耐性菌が発生しないようにするためには、その薬剤を使用せず、その薬剤に よる防除圧を与えないことである。しかし実際には、薬剤防除することなく黒星病を防除すること は非常に難しいため、耕種的防除を積極的に取り入れ、園内の菌密度を低下させ、薬剤防除に特化 しないようにすることである。病害が多発すると薬剤による対策を重視しがちであるが、まずは耕 種的防除の見直しが重要であり、具体的には以下のとおりである。

1) 落葉の処分

被害落葉は翌年の子のう胞子飛散源として第一次伝染源となるため、処分して越冬伝染源の 量を減らす。近年は、焼却処分が困難となったため、背負い式動力送風機や熊手などを用いて、 圃場内の樹の周りや園内及び園の周囲の落葉を作業できる場所まで移動させ、ハンマーモア等 で細かく粉砕し、ロータリ耕等により土中に埋没させる方法もある。富山県では、所持してい る機械や園地の状況に合わせて、乗用草刈機による粉砕処理やロータリを用いた中耕すき込み 処理などの方法を各人が選択できるよう落葉処理マニュアルを作成し、落葉処理の徹底を図っ ている(舟橋、2019)。

2) 鱗片発病芽の除去

黒星病は、ナシ収穫後から落葉期において分生子が雨水ともに罹病葉病斑から枝を流下して 芽基部に到達し、鱗片に感染した状態で越冬する。感染した芽は翌春に鱗片発病芽となり、被 害落葉同様に第一次伝染源となるため、4月上旬から中旬にかけて、鋏とビニル袋を持って園 内を見回り、鱗片発病芽を除去して園外で処分する(金子、2014)。鱗片発病芽は、萌芽期頃に 確認することは熟練者でも非常に難しいが、開花直前頃になれば、基部に枯死鱗片が固着して いるなどの特徴が明瞭となるため、発病の有無を判断しやすくなる(梅本、1993)。

3) その他の耕種的防除

生育期間中に発病した葉や幼果を随時園外に持ち出し、処分する。また、風通しを良くし、葉 が乾きやすい状態にすることも有効である。

(2) 薬剤の系統や耐性菌リスクの情報の把握及びその提示

前述のとおり、治療剤は効果が高い一方で、耐性菌の発生のリスクが高いことから、本県の防除 体系においてはナシの感受性が高い重要防除期に用いることとしている。なお、使用においては以 下のような指導方針としている。

1)年間使用回数の上限

農薬登録における使用回数は薬効薬害や農薬の使用者、環境、消費者への安全面の観点から 設定されており、耐性菌の発生リスクを考慮したものではない。殺菌剤耐性菌研究会の殺菌剤 使用ガイドラインにおいては、DMI剤の使用回数は年2~3回、QoI剤及び SDHI剤は年2 d

回までとなっている。本県のナシ防除指針では指導機関や生産者が薬剤の系統や具体的な商品 名がわかるように FRAC コード、防除指針での使用回数、商品名などを記載している(表 2) 2) 連用の回避と予防剤の加用

耐性菌の発生リスクの軽減には、同系剤の連用を避け、複数の系統の薬剤をローテーション 散布することが有効である(石井、2012)。本県のナシ防除指針でも、出来る限り単用や連用を 避ける方針で編成されている。

	作用機構分類コードは FRAC による分類コード(サブグループ)を示す。										
	FRAC	防除指針		耐性菌(の報告等						
系統	コード	での 使用回数	殺菌剤の例(商品名)	黒星病	炭疽病						
BI剤	1	2	トップジン M 水和剤, ベンレート水和剤	県内 ^{)注2}	県内)注2						
			マネージ DF,スコア顆粒水和剤,インダーフロアブル,								
	З	0	アンビルフロアブル,オンリーワンフロアブル,		登録なし						
DMI 剤		3	オーシャイン水和剤,オルフィンプラスフロアブル ^{)注 1} ,	国内/注3	(効果なし)						
			アクサーフロアブル ^{)注 1}								
	11		アミスター10フロアブル,ストロビードライフロアブル,	国内)注4							
Qol 剤		2	ナリア WDG ^{)注 1} ,ファンタジスタ顆粒水和剤,スクレア	(リン	国内)注3						
			フロアブル	⊐))							
	0	4	フルピカフロアブル、ユニックス顆粒水和剤 47	お生な」	登録なし						
AP 創	9	1		報告なし	(効果なし)						
			ナリア WDG ^{)注 1} , アフェットフロアブル, パレード 15フ								
	-		ロアブル,フルーツセイバー,オルフィンプラスフロアブ		登録なし						
SDHI 剤	(1	ル ^{)注 1} ,ネクスターフロアブル.アクサーフロアブル ^{)注 1} ,	報告なし	(効果なし)						
			カナメフロアブル. セルカディスDフロアブル ^{)注 1}								
注 1)ナリン アブル	ア WDG I は DMI	は QoI 剤と 剤と SDH	SDHI 剤の混合剤であり,オルフィンプラスフ I 剤の混合剤である。セルカディスDフロアブル	ロアブル、 は、SDH	アクサーフロ I 剤とジチア						

各薬剤系統の種類と耐性菌の発生状況 表 2

ノンの混合剤である。 注2)県内:県内のなし栽培で耐性菌の報告がある。

注3)国内:国内のなし栽培で耐性菌の報告がある。

注 4)国内(リンゴ):国内のリンゴ栽培で耐性菌の報告がある。

(3) 簡易なモニタリング手法の検討

ナシ黒星病における DMI 剤耐性菌は、国内で既に実用上問題となるレベルで発生が報告されて いることから、本県においても耐性菌の発生状況の把握は重要であり、普及機関や生産者から強く 求められている。耐性菌の検定方法には、薬剤を含有する培地上での生育を評価する方法があり、 この方法では本県では実害となるレベルの耐性菌はいないと報告された(大谷ら、2006)。しかし その後、石井ら(2008)は培地上の検定結果と接種試験の結果は必ずしも一致しないことから、最 終的にはナシ樹上で評価すべきとしている。本県では、梅本ら(2012)によりナシ鉢苗を用いた検 定が行われ、DMI 剤の高い防除効果が確認できている。しかし、この試験は、2012 年当時の2 圃 場分のデータであり、労力の割には情報としては限定的であり、耐性菌の発生状況を網羅的、継続 的に把握するには、定期的なモニタリングの実施が必要となる。しかしながら、研究機関における 労力には限りがあることから、普及機関や生産者自らが実施可能な簡易なモニタリング手法が必 要とされている。

そこで、簡易なモニタリング手法として、県内の複数のナシ園において、園外で予め DMI 剤で あるジフェノコナゾール水和剤を散布したナシ鉢苗(以下、処理区)、対照薬剤としてイミノクタ ジンアルベシル酸塩水和剤を散布したナシ鉢苗(以下、対照区)及び何も散布していないナシ鉢苗 (以下、無処理区)をそれぞれ園内に隣り合うように設置し(写真1)、自然条件下においた鉢苗 の黒星病の発病状況から DMI 剤の防除効果が評価できるか検討を行った。その結果、無処理区で 発病が見られた圃場では、処理区及び対照区は、無処理区に比べ、高い防除効果が認められた。ま た、多くの調査地点において処理区は対照区と比べ、同等ないし高い防除効果が認められた。ただ し、2018年の自井市①及び自井市②では、処理区の防除効果が他の調査地点と比べると低い値と なっている。初年度の実施ということもあり、鉢苗に対する殺虫剤等による防除が不十分となり、 アブラムシやハダニ等の害虫が発生したこと及び調査葉に生じた病斑が黒星病によるものか判別 が難しい場合についても黒星病罹病葉としてカウントしたことが原因の1つではないかと考えら れる。2019年以降は、2018年の反省から予防的に殺虫剤を散布したことで鉢苗に害虫の発生が見 られなかったこと及び2018年の経験を踏まえて黒星病の判別を行った結果、自井市①ではいずれ の試験区でも黒星病の発病がなく、白井市②においては、2019年及び2020年ともに処理区にお いては、対照区及び無処理区よりも高い防除効果が認められた。(表3)。

また、ナシ鉢苗を設置したナシ園より採取した黒星病菌を用いて菊原ら(2018)の方法に準じて 接種試験を実施したところ、鉢苗を用いたモニタリング結果と同様に処理区では高い防除効果が 確認され、対照区においては白井市②2019 年採取を除き高い防除効果が確認された。白井市② 2020 年採取では対照区においても高い防除効果が確認されており、反復を増やせば、より安定し た結果が得られたと考えられる(表4)。以上のことから、ナシ鉢苗をナシ圃場に設置し、設置し た鉢苗の黒星病の発病状況をモニタリングするという簡易な手法で圃場ごとの DMI 剤の防除効果 を概ね把握できると考えられた。

なお本手法では、概ね 10 日間隔で薬剤を散布し、残効が切れないように管理する必要があり、 またナシ鉢苗への潅水や通常防除の際に用いた薬剤が鉢苗にかからないようにビニル袋で覆う(写 真2)など労力はかかる。また、発生した病斑を黒星病かどうか判別できる程度の経験は必要とな るが、接種試験と異なり、専門的な装置や技術を必要としないため、普及機関や生産者自らが十分 に実施可能である。よって、本手法のみで耐性菌の発生を判断するのではなく、生産現場における 一次スクリーニング法として活用し、処理薬剤の防除効果が不十分であった圃場については、さら に接種試験を実施することで耐性菌の発生状況の把握を効率よく実施できると考えられる。

5

写真1 現地圃場での設置状況

写真2 生産者通常防除時の様子 (試験苗に薬液が付着しないよう、 ビニル袋をかける)

表3 県内ナシ圃場に設置したナシ鉢苗における DMI 剤のナシ黒星病に対する防除効果

細木圃根	供試変刻	希釈		2018年		2019年			2020年		
詞宜圃物	供訊樂剤	倍数	発病葉率	発病度	防除価	発病葉率	発病度	防除価	発病葉率	発病度	防除価
	ジフェノコナゾール	4,000	5.3	1.1	96.2	-	—	-	-	-	-
市原市①	イミノクタジンアルベシル酸塩	1,500	3.7	0.7	97.6	-	_	-	-	-	_
	無処理	_	41.8	28.7		-	_	-	-	-	_
	ジフェノコナゾール	4,000	—	—	—	0	0	—	0	0	—
市原市②	イミノクタジンアルベシル酸塩	1,500	—	—	—	0	0	—	0	0	_
	無処理	_	_	_	—	0	0		0	0	
	ジフェノコナゾール	4,000	1.6	0.3	93.3	0	0	—	0	0	—
船橋市	イミノクタジンアルベシル酸塩	1,500	4.3	0.9	80.0	0	0	_	0	0	_
	無処理	-	15.5	4.5		0	0		0	0	
	ジフェノコナゾール	4,000	2.9	0.6	84.2	0	0	—	0	0	—
市川市	イミノクタジンアルベシル酸塩	1,500	4.6	0.9	76.3	0	0	—	0	0	_
	無処理	-	13.5	3.8		0	0		0	0	
-	ジフェノコナゾール	4,000	9.4	1.9	61.2	0	0	—	—	—	—
白井市①	イミノクタジンアルベシル酸塩	1,500	5.5	1.1	77.6	0	0	—	_	_	_
	無処理	-	20.4	4.9		0	0		-	_	_
	ジフェノコナゾール	4,000	5.6	1.1	82.3	0	0	100	1.9	0.4	96.3
白井市②	イミノクタジンアルベシル酸塩	1,500	3.1	0.6	90.3	3.6	0.7	88.2	1.4	1.4	86.4
	無処理	-	27.7	6.2		14.3	6.1		15.8	10.2	
-	ジフェノコナゾール	4,000	1.8	0.4	95.1	0	0	100	_	—	_
香取市	イミノクタジンアルベシル酸塩	1,500	6.1	1.2	85.4	4.8	1.0	97.1	_	_	_
	無処理	-	23.9	8.2		44.6	32.5		_	_	_
	ジフェノコナゾール	4,000	—	—	—	0	0	—	-	—	—
一宮町	イミノクタジンアルベシル酸塩	1,500	_	_	-	0	0	_	-	_	_
	無処理	_	_	_	-	0	0		-	-	_
	ジフェノコナゾール	4,000	—	—	—	—	—	—	0	0	100
いすみ市	イミノクタジンアルベシル酸塩	1,500	—	—	—	_	_	—	0	0	100
	無処理	-	—	—	—	_	_	—	1.5	0.9	
	ジフェノコナゾール	4,000	—	—	—	0	0	100	1.7	0.3	93.4
木更津市	イミノクタジンアルベシル酸塩	1,500	—	—	—	3.2	0.6	93.2	0	0	100
	無処理	-	—	—	—	21.8	9.5		19.1	7.2	
て茶士	ジフェノコナゾール	4,000	_	—	—	0	0	100	_	_	_
一十朱巾 (曲廿公Ⅲ)	イミノクタジンアルベシル酸塩	1,500	_	_	—	15.0	5.0	77.6	_	_	_
(辰小小心圻)	無処理	-	-	_	—	45.1	22.4		_	_	_

注1)区制は1区1樹反復なしとした

2) 2020 年のいすみ市及び木更津市の鉢苗は圃場から回収調査時点で無処理区の発病が少なかったため、圃場から回収後農林総研内の雨よけハウスで9日静置後に調査した値である

薬散日	接種日	調査日	採取圃場	薬剤名	希釈倍数	発病葉率 (%)	発病度	防除価
			白井古①	ジフェノコナゾール	4,000	0	0	100
2020年9月7日	2020年9月8日,9日	2020年10月14日	2010年初期	イミノクタジンアルベシル酸塩	1,500	0	0	100
			2019-中1木収	無処理	-	13.2	2.7	
			白井士②	ジフェノコナゾール	4,000	0	0	100
2020年4月27日	2020年4月29日	2020年5月29日	口开印②	イミノクタジンアルベシル酸塩	1,500	33.3	23.3	48.5
			2019年休取	無処理	—	53.3	45.3	
			白井主②	ジフェノコナゾール	4,000	0	0	100
2020年5月15日	2020年5月17日	2020年6月10日	日井市区	イミノクタジンアルベシル酸塩	1,500	11.1	2.2	93.8
			2020年抹取	無処理	_	44.4	35.6	
			禾丽士	ジフェノコナゾール	4,000	0	0	100
2019年7月1日	2019年7月2日, 3日	2019年7月29日	2019年採取	イミノクタジンアルベシル酸塩	1,500	0	0	100
				無処理	_	91.7	71.7	
			香取市 2010年1513	ジフェノコナゾール	4,000	0	0	100
2020年5月17日	2020年5月19日	2020年6月18日		イミノクタジンアルベシル酸塩	1,500	0	0	100
			2019-中1木収	無処理	-	27.8	12.2	
			十五净子	ジフェノコナゾール	4,000	0	0	100
2020年4月27日	2020年4月29日	2020年5月29日	不更/手巾 2010年初期	イミノクタジンアルベシル酸塩	1,500	6.7	2.7	90.0
			2019年抹取	無処理	_	41.7	26.7	
			十五净子	ジフェノコナゾール	4,000	0	0	100
2020年5月17日	2020年5月19日	2020年6月18日	不更洋巾 2020年初期	イミノクタジンアルベシル酸塩	1,500	0	0	100
			2020年抹取	無処理	_	27.8	10.0	
			千葉市	ジフェノコナゾール	4,000	0	0	100
2019年7月3日	2019年7月4日, 5日	2019年7月31日	(農林総研)	イミノクタジンアルベシル酸塩	1,500	0	0	100
			2019年採取	無処理	-	77.8	71.1	

表4 県内ナシ圃場で採取された黒星病菌に対する DMI 剤の防除効果

注1) 接種した黒星病菌は 2019 年5月~6月及び 2020 年5月にかけて表3で鉢苗を設置した圃場 で採取した

- 2)黒星病菌を接種後直ちに鉢苗を恒温高湿接種装置内に移し、20℃2日間静置し、その後雨よけ ハウスに設置した
- 3)区制は白井市①のみ1区1樹2反復、それ以外は1区1樹反復なしとした

(4) DMI 剤の使用回数の削減に向けた他系統の薬剤の探索及び導入

前述のとおり、本県の防除指針では、DMI 剤の使用回数は年3回となっているが、耐性菌の発 生リスクは高い状態となっている。そこで、本県では、DMI 剤耐性菌の発生リスクを軽減させる ため、防除効果を損なうことなく、DMI 剤の使用回数を年2回とする新たな防除体系の構築に取 り組んでいる。DMI 剤の使用回数を削減するには、他の薬剤への置き換えが必要となるが、QoI 剤 や SDHI 剤など他の治療剤への負荷が増すことを避けるため、新規薬剤や現時点でナシ黒星病に 登録のない薬剤を中心に探索を行った。

系統不明である MIF-1002 フロアブル及び NF-180 フロアブル 20 は、黒星病に対し、DMI 剤 であるジフェノコナゾールと同程度の高い防除効果が認められ、さらに MIF-1002 フロアブルは 心腐れ症についても高い防除効果が認められた。イチゴの炭疽病等に登録のあるフェニルピロー ル系剤であるフルジオキソニル水和剤は、黒星病及び炭疽病に高い防除効果が認められたため、ナ シ病害に対する登録取得を進めている。なお、亜リン酸液体肥料についても、既報のとおり(田中 ら、2017)、黒星病に対して防除効果があった(青木ら、2019;金子、2016b;表5、6、7)。こ の結果をふまえて、現在、既存の防除体系下において DMI 剤と置き換えた場合の防除効果等につ いての評価試験を実施している。

表5 新規薬剤のナシ黒星病に対する防除効果

希釈	希釈防除価							
倍数	2014年	2015年	2016年	2017年	2018年	2019年		
2,000	100	—	—	—	97.9	—		
2,000	—	_	99.8	—	97.9	100		
4,000	—	_	99.3	—	_	_		
2,000	97.3	96.5	—	88.1	87.4	94.1		
1,000	—	—	90.4	81.8	74.7	89.3		
4,000	—	—	—	—	97.9	—		
1,500	94.5	96.5	98.0	91.4	91.6	98.7		
	希釈 <u>倍数</u> 2,000 2,000 4,000 2,000 1,000 4,000 1,500	希釈 倍数 2014年 2,000 100 2,000 - 4,000 - 2,000 97.3 1,000 - 4,000 - 1,500 94.5	希釈 倍数 2014年 2015年 2,000 100 - 2,000 - - 4,000 - - 2,000 97.3 96.5 1,000 - - 4,000 - - 1,500 94.5 96.5	希釈 防防 倍数 2014年 2015年 2016年 2,000 100 - - 2,000 - - 99.8 4,000 - - 99.3 2,000 97.3 96.5 - 1,000 - - 90.4 4,000 - - - 1,500 94.5 96.5 98.0	希釈 防除価 倍数 2014年 2015年 2016年 2017年 2,000 100 - - - 2,000 - - 99.8 - 4,000 - - 99.3 - 2,000 97.3 96.5 - 88.1 1,000 - - 90.4 81.8 4,000 - - - - 1,500 94.5 96.5 98.0 91.4	希釈 防除価 倍数 2014年 2015年 2016年 2017年 2018年 2,000 100 - - 97.9 2,000 - - 99.8 - 97.9 2,000 - - 99.3 - - 2,000 97.3 96.5 - 88.1 87.4 1,000 - - 90.4 81.8 74.7 4,000 - - - 97.9 1,500 94.5 96.5 98.0 91.4 91.6		

|注1) 供試品種は「長十郎」を用い、区制は1区2樹3反復とした

2) -は試験せず

表6 新規薬剤のナシ心腐れ症に対する防除効果

供封衷刘	希釈			防除価					
医矾果剂	倍数	2014年	2015年	2016年	2017年	2018年			
MIF - 1002フロアブル	2,000	69.5	84.3	70.0	77.6	63.5			
フルジオキソニル	2,000	17.7	35.9*	—	—	—			
チウラム	500	55.9	66.6	66.4	61.2	49.6			
注1)*を付したものは1区1/2樹2連制、その他は3連制									

2) -は試験せず

表7 新規薬剤のナシ炭疽病に対する防除効果

供封英刘	希釈			防隊	余価		
供訊架別	倍数	2015年	2016年	2017年	2018年	2019年	2020年
フルジオキソニル	2,000	96.4	99.5	—	89.1	98.7	99.6
亜リン酸液体肥料	1,000	—	—	0*	—	—	—
ジチアノン	1,000	97.6	96.6	94.9	83.1	83.7	65.4

注1)*を付したものは1区1樹2連制、その他は2樹3連制

2) -は試験せず

5 おわりに

DMI 剤は、ナシ黒星病の基幹防除剤として欠かすことのできない薬剤である。薬剤を使用する限 り、耐性菌の発生は避けられないとしても、少しでも発生リスクを軽減させることが重要である。ま ずは、落葉処理や鱗片発病芽の除去など耕種的防除を積極的に取り入れ、園内の菌密度を低下させる ことで薬剤防除への依存度を下げることが必要となる。そのうえでモニタリングによって耐性菌の発 生状況を把握すること及び DMI 剤に代わる他系統の薬剤の導入が望まれる。前述で述べたとおり、 鉢苗を用いた簡易なモニタリングを実施することで従来よりも効率的に耐性菌の発生状況を把握で きれば、耐性菌の発生を速やかに感知できるようになると考える。また、他系統の薬剤の導入におい ては、従来、新規薬剤は上市後に他の薬剤との混用の適否、置き換えによる他の病害への影響、果実 汚れなど現地適応性の検討に時間を要し、防除体系に反映するまでに時間を要してきた。しかしなが ら、耐性菌の発生リスク軽減には、新たな系統の薬剤の速やかな導入が重要となるため、登録取得を 見越して、上市前から前述の内容について評価を行うことで、遅滞なく防除体系に反映できるよう取 り組んでいる。 耐性菌発生の報告は、生産現場において薬剤を散布しているにもかかわらず、十分な防除効果が得 られないことが端緒となることが多い。耐性菌の発生が確認されると、多大な労力を費やしてモニタ リングが実施、継続される。耐性菌の発生が確認された薬剤を、他系統の薬剤に置き換えれば、他系 統の薬剤への負荷が増大し、新たな耐性菌の発生リスクも高まる。さらには、副次的に防除コストの 増大、併殺されていたマイナー病害の顕在化も生じる。このように、耐性菌対策は耐性菌の発生を受 けてから動き出すことが多く、後手に回りやすい。本県の耐性菌対策の取り組みは、耐性菌が発生す る前に DMI 剤の使用回数を削減するという先手を打った貴重な事例であり、今後の耐性菌対策にと って意義があると考える。

引用文献

- 赤平知也・花岡朋絵(2013) 青森県におけるストロビルリン系薬剤耐性リンゴ炭疽病菌の発生. 日植病報 79:197-198. 講要
- 青木由・金子洋平・福田寛(2019)千葉県における DMI 剤耐性ナシ黒星病の発生リスク軽減を目的 とした新規系統剤の探索. 日植病報 85:249. 講要
- 平山和幸・花岡朋絵・新谷潤一・鞍馬由記子・赤平知也(2017a)青森県における DMI 剤耐性リンゴ 黒星病菌の発生.北日本病虫研報. 68:108-114.
- 平山和幸・赤平知也・花岡朋絵(2017b)青森県における QoI 剤耐性リンゴ黒星病菌の発生. 北日本 病虫研報. 68:115-119
- 石井英夫・西村久美子・井手洋一・菊原賢次・加藤寛・埋橋志穂美(2008) DMI 剤耐性ナシ黒星病菌の佐賀県及び福岡県からの検出と耐性菌の現状.日植病報. 74:271. 講要
- 石井英夫(2012) QoI 剤および SDHI 剤耐性菌の現状と薬剤使用ガイドライン. 植物防疫. 66:481-487.
- 舟橋志津子(2019)ナシ黒星病の落葉処理による被害軽減効果. 植物防疫. 73:565-571
- 金子洋平(2014)千葉県における黒星病の秋期防除. 植物防疫. 68:457-461.
- 金子洋平(2016a)千葉県におけるナシ病害の防除体系と耐性菌マネージメント.日本植物病理学会 第26回殺菌剤耐性菌研究会シンポジウム講演要旨.56-63.
- 金子洋平(2016b) QoI 剤に依存しないナシ炭疽病の防除薬剤の選抜及びその他の数種病害に対する 防除効果の確認. 千葉農林総研研報. 8:1-7.
- 菊原賢次・石井英夫 (2008) 福岡県におけるフェナリモル耐性ナシ黒星病菌の発生. 九州病虫研会報. 54:24-29.
- 菊原賢次・足立龍弥・齊藤紀子・飯山和弘・松元賢・古屋成人(2018) 福岡県における DMI 剤低感 受性ナシ黒星病菌の発生状況.九州病虫研会報. 64:1-6.
- 野口真弓(2015) 佐賀県における QoI 耐性ナシ炭疽病の発生とその対策. 植物防疫. 69:494-497
- 大谷 徹・塩田あづさ・平野堅一(2006)千葉県内で採集したナシ黒星病菌の DMI 剤に対する感受
 性. 千葉農試研報. 5:105-108.
- Sallato,B.V., Latorre,B.A. and Aylwin G. (2006) First report of practical resistance to QoI fungicides in *Venturia inaequalis* (Apple scab) in Chile. Plant Dis. 90:375.
- 田中篤・山田高之・三木祥平(2017)ナシ黒星病及ナシ黒斑病に対する亜リン酸肥料の発病抑制効果. 日植病報 83:192. 講要

田代暢哉・井手洋一・井下美加乃(2008) 収穫期のベンゾイミダゾール系薬剤散布前のハウスミカン 園および極早生温州ミカン園における同系薬剤耐性緑かび病菌の検出状況と同系薬剤による防 除効果の低下.日植病報.74:89-96.

梅本清作(1993) ニホンナシ黒星病の発生生態と防除に関する研究.千葉農試特報 22:59-69.

梅本清作・金子洋平・亀田啓二・山本愛子・鈴木純也・福田 寛・池辺憲彦(2012)ナシ黒星病防除 における脱メチル化阻害(DMI)剤の防除効果並びに残効期間.関東病虫研報. 59:115-118.

- 渡邉久能(2012)大分県の落葉果樹における殺菌剤耐性菌の現状について.日本植物病理学会第 22 回殺菌剤耐性菌研究会シンポジウム講演要旨.1-10.
- Zheng,D., Olaya,G. and Koller W. (2000) Characterization of laboratory mutants of *Venturia inaequalis* resistant to the strobilurin-related fungicide kresoxim-methyl. Curr. Genet. 38:148-155.

長野県における薬剤耐性リンゴ黒星病菌の発生と対策

Occurrence and management of DMI and QoI fungicide-resistant isolates of Apple scab in Nagano Prefecture

長野県果樹試験場 江口直樹、近藤賢一

Naoki Eguchi and Ken-ichi Kondo, Nagano fruit tree experiment station

Abstract

DMI and QoI fungicide-resistant isolates of apple scab were transmitted with nursery trees to Nagano Prefecture in 2018. Disease management system without DMI fungicides were carried out after June, 2018, to prevent epidemics of resistant strains. In 2019, although the resistant strains were detected from six orchards in frequent area of apple scab, the density of the resistant isolates was low.

1 はじめに

昭和50~60年代にかけて猛威をふるったリンゴ黒星病は、卓効を示すDMI剤の登場によって発生が大幅 に減少した。DMI剤は黒星病に対して高い予防効果と治療効果を持つことから、現在の回数での春季防除を 可能とし、赤星病やうどんこ病など他の春季りんご病害にも幅広く効果があることから、上市以降30年近く 春季の基幹防除薬剤として使用されてきたが、平成30年にDMI剤とQoI剤に耐性を有すると考えられる リンゴ黒星病菌(以下薬剤耐性黒星病菌)が長野県内ではじめて確認された。薬剤耐性黒星病菌は、同年に県 外から導入したりんご苗木によって本県に伝搬されたと考えられ(江口ら,2019)、平成30年のみで1,000を 超える圃場に約15,000本が導入されたことから、県内の広いエリアで同時に薬剤耐性を持つ黒星病が発生す る事態となった。この薬剤耐性黒星病菌が県内でまん延し、定着した場合には、黒星病防除にDMI剤が使用 できなくなることから、黒星病の発生増加、防除回数や防除コストの増加等の著しい影響が懸念された。そこ で長野県では、薬剤耐性黒星病のまん延、定着を防止し、DMI剤を基幹薬剤とした従来の安定的、効率的な 防除体系を維持することを目的として、この問題が発生した直後から県全体で対策に取組んできた。この2年 間の対応の内容や薬剤耐性黒星病菌の発生状況を紹介する。

2 平成30年の発生状況と対応

(1) 薬剤耐性黒星病菌の確認

平成30年6月、黒星病の発生が極めて少ない県中部地域において、当年定植した苗木で黒星病が多発する 事例が同時多発的に確認された。周辺には黒星病の発生が認められないにも関わらず、定植した苗木でのみ激 しく発病しており、葉裏や葉柄にも病斑がみられるなど(図1)、子のう胞子由来による一般的な発生と大き く異なった。同様の状況は県全域で確認され、黒星病を発病した苗木は、薬剤耐性黒星病の発生が報告されて いる県から導入されたものが多かった。いずれの圃場もDMI剤を2回散布しているにも関わらず激しく発病 しており、同剤の効果が認められないと考えられたことから、遺伝子診断(八重樫ら、2018)を実施したとこ ろ、苗木生産地で確認されている黒星病菌との同様の遺伝子変異(*CYP51A1*遺伝子におけるA398T塩基 置換)が検出され、DMI剤耐性菌であると考えられた。

なお、本県では薬剤耐性黒星病菌のまん延防止を図っていることから、分離菌株を用いた接種による防除効 果試験は実施していない。遺伝子診断により*CYP51A1*遺伝子におけるA398T塩基置換を有する菌株をD MI剤耐性菌、チトクローム*b*遺伝子におけるG143A塩基置換を有する菌株をQoI剤耐性菌とした。

図1 苗木で発生した黒星病(平成30年6月撮影)

(2) 防除対応

耐性菌の保菌リスクが高いと考えられた県外産苗木(平成29年に耐性菌発生県で生産)は、平成30年だけで県下広域に約15,000本導入されていたことから、県では平成30年7月10日に「長野県リンゴ黒星病(D M I 剤耐性菌)対策チーム」を設置し、農業関係団体と県関係機関が連携して、耐性菌のまん延防止と防除対策の徹底に取組んだ。

ア 導入した県外産苗木への対応

現地での発病状況、分生子形成調査の結果から、黒星病菌は枝先端部付近の芽で越冬している可能性が高 く、苗木の形態により耐性菌の保菌リスクは異なると考えられた(江口ら,2019)。そのため、1年枝(芽) の数が多く、保菌リスクが極めて高いと考えられるフェザー苗木(台木をM.9として、側枝を発生させた2 年生苗木)は、発病の有無にかかわらず抜根処分することとし、一本棒状苗木(側枝のない従来からの1年生 苗木)は、当該苗木および周辺圃場での発病状況により抜根処分または経過観察と対応を分けた(図2)。ま た、全ての導入圃場を継続的に巡回し、発病状況の確認、発病葉や果実の摘み取りを行った。

◆一本棒状苗木(切り戻しあり) 用途:従来の普通樹栽培に用いる 定植時に先端から1/2~2/3を切除 形態:側枝のない1年生苗 台木:マルバカイドウ 黒星病伝染リスク:低 平成30年の対応:黒星病発病苗は伐根

用途:わい化栽培に用いる 形態:側枝のない1年生苗 台木:M.9自根あるいはマルバカイドウ/中間台M.9 黒星病伝染リスク:中 平成 30 年の対応:黒星病発病苗は伐根

図2 長野県で流通する苗木の形態・特徴と平成30年の耐性菌対策の対応

イ 防除体系の変更

薬剤耐性黒星病菌の発生を確認した7月以降は、耐性菌対策を考慮した防除体系に変更し、県全体で取組んだ。具体的には、QoI剤(単剤)を使用する場合は、黒星病に効果を有する作用機構の異なる保護殺菌剤を 加用した。また、秋季感染を増加させないよう、最終防除時期を10月上旬(通常は9月中下旬頃とする地域 が多い)とした。

(3) 平成 30 年の薬剤耐性黒星病の発生状況

ア 導入苗木で発生した黒星病の薬剤耐性検定結果

県外産苗木を導入した27 圃場、県内産苗木を導入した6 圃場、平成30年に苗木を導入していない13 圃場 (いずれも黒星病の発生あり)から黒星病罹病葉を採取し、遺伝子診断法(八重樫ら,2018、Fontaine *et al*, 2009)により単胞子分離菌株の遺伝子変異の有無を検定した(表1)。県外産苗木を導入した圃場では、27 圃場中19 圃場(70.4%)で薬剤耐性菌が検出され、139 菌株中97 菌株(69.8%)がDMI剤耐性菌、94 菌株 (67.6%)がQoI剤耐性菌であった。DMI剤、QoI剤の両方に耐性を示す菌株は全体の66.2%であっ た。一方、県内産苗木を導入した圃場や苗木を導入していない圃場では、DMI剤、QoI剤耐性菌ともに確 認されなかった。

表1	採取したり	\geq	/ゴ里星病菌の由来と 薬剤 耐性 ¹⁾
11 1		~	

(平成30年 長野果樹試)

	圃場ごとの集計			発病樹(菌株)ごとの集計(DMI剤・QoI剤に対する感受性) ²⁾					
検定菌株の由来	検定 圃場数	耐性菌 確認圃場数		検定樹数 (菌株数)	S·S	R·S	S·R	R•R	
県外産苗木	27	19		139	40	5	2	92	
長野県産苗木	6	0		17	17	0	0	0	
苗木未導入の一般圃場	13	0		84	84	0	0	0	

1) 単胞子分離した菌株を分離金株を供試

2) 1樹につき1菌株を供試した。 S:感受性(遺伝子変異なし)、R:耐性(遺伝子変異あり)

イ薬剤耐性菌の拡散

中部地域で県外産苗木を導入した6 圃場(うち、4 圃場で耐性菌の存在を確認)について、周辺樹での発生 を継続的に調査した(表2)。この地域は近年黒星病の発生が確認されていないため、発生した黒星病は導入 した県外産苗木に由来する可能性が高いと考えられた。調査の結果、わずかではあったが、すべての圃場で周 辺樹への拡散が確認された。調査の都度、発病葉を摘み取って処分したが、10 月まで新たな発生が続いた。 目視で確認した限りでは、導入苗木の定植位置から最も遠い位置で10m以内の範囲であった。

なお、周辺樹で発生した発病葉を採取し耐性検定(遺伝子変異の検出)を試みたが、夏季は胞子を含む菌体 量が少なく、*CYP51A1*遺伝子の野生型、変異型のバンドがともに検出されない場合が多かった。No.3 圃場の10月4日調査において2病斑のみバンドが検出され、いずれも*CYP51A1*遺伝子の変異が確認され た。

表2 県外苗木導入圃場における苗木抜根後の周辺の黒星病発生1)

(平成30年 長野果樹試)

圃場 導入苗木		導入	道入の出況	耐性菌数2)	周辺樹での発生3						
No.	の形態	本数	等八小八八	/検定数	8月3日	9月3日	10月4日	10月30日			
1	一本棒状 (切戻しあり)	60	9列に補植	6/6	隣接1樹に1葉	_	隣接1樹に1葉	—			
2	フェザー	130	2列を改植	8/10	1列隣に数ヵ所	1列隣3樹に6葉	1列隣1樹に1葉 2列隣1樹に1葉	_			
3	フェザー	300	3列を改植	14/15	_	1列隣4樹に6葉	1列隣7樹に14葉	1列隣2樹に3葉			
4	フェザー 一本棒状 (切戻しなし)	数本 づつ	5列に補植	未実施	隣接1樹甚発生 (この樹は伐根) 1列隣多発生	1列隣1樹に7葉	隣接1樹に3葉 1列隣3樹に約50 葉	隣接1樹に3葉			
5	一本棒状 (切戻しなし)	10	1列を改植	未実施	導入苗2樹で発生 →伐根	_	_	隣接1樹で3葉			
6	フェザー	44	1列を改植	4/15	1列隣2樹で2葉	1列隣5樹多発 2列隣3樹で多発	2列隣4樹で7葉	1列隣1樹で1葉			

1) 圃場 No.5除き、導入苗はすべて伐根処分した。

2)6月に導入苗木に発生した黒星病の病斑から直接DNAを抽出し、八重樫(2018)の方法によりCYP51A1遺伝子の変異を検出した。

3)「-」は周辺全樹を調査したが発生が確認できなかったことを示す。

表3には農業改良普及センターが主体となって実施した、県下での県外産苗木導入圃場に対する巡回調査の 結果を示した。耐性菌確認後、速やかな導入苗木の伐根や罹病葉の摘み取り、変更した防除体系の徹底を行っ た結果、県全体としても発生圃場数、発生量は順次、減少する傾向であった。しかし、前述の定点圃場と同 様、一部の圃場では秋季まで発病が多い状態が続いた。

表3 県外苗木導入圃場に対する巡回調査の概要

(平成30年 農業改良普及センター調べ)

地域	一般圃場の 黒星病の発生	導入苗木の主な形態	巡回時期 回数	導入圃場の黒星病の発生経過
北部	恒常的に 広範囲で発生	一本棒状苗木 (切り戻しあり)	6月下旬~10月中旬 3回	発生圃場数、発生量は減少するも、秋季まで発生圃場 数は多い(在来菌の可能性)
東部	一部の圃場で 発生	ー本棒状苗木 (切り戻しあり) 一部にフェザー苗木	6月下旬~10月中旬 4回	徐々に減少したが、一部圃場で秋季まで発生みられ る(在来菌の可能性)
中部	発生なし	フェザー苗木 一本棒状苗木 (切戻しなし)	6月中旬~10月中旬 4~5回	導入が多い地域では発生量は減少するものの、発生 圃場数はほほ同じ〜若干減少
南部	発生なし	一本棒状苗木 (切り戻しあり)	6月中旬~10月下旬 3~4回	最終調査で発生はほぼゼロに

3 令和元年の対応と薬剤耐性黒星病菌の発生状況

(1) 令和元年の防除対応方針と取り組み状況

平成30年の調査の結果、県内に薬剤耐性黒星病菌が残存している可能性があると考えられたため、令和元 年は年間を通して耐性菌対策を考慮した、DMI剤によらない黒星病強化防除体系(令和元年度版、表4)を 県全体で取組むこととした。ポイントは生育初期の防除回数を増やすこと、開花期前後の防除をDMI剤以外 の薬剤を使用すること、QoI剤を単用しないことである。

これらの防除暦の変更内容について、生産現場での取り組み状況を同じく表4に示した。JA等が発行する 20防除暦をみると、開花前後はすべての防除暦でユニックス、オルフィン等のAP剤とSDHI剤を基幹と し、12防除暦ではDMI剤を使用せず、残り8防除暦は開花前にDMI剤を1回加用した。また、QoI剤 を使用した18JA中17JAではオーソサイドあるいはベルクートを加用して、QoI剤の単用はしなかった。本県ではJA以外の農薬販売店等が作成する防除暦によって防除を行う生産者も多いが、県として、これら農薬販売店等にも強化防除体系への取組みを依頼し、方針が反映された防除暦が策定された。

n -1:11 0	1	従来体系(平成30年)		耐性菌对第	镜独化体系(令和元年)		
時别	回数	ステージと薬剤	回数	ステージと薬剤	ポイント	取組状況1)	
3月下	1	【発芽10日前】 石灰硫黄合剤	1	【発芽10日前】 石灰硫黄合剤			
	2	【発芽10日後】 アントラコール顆粒水和剤 パスポートフロアブル ユニックス顆粒水和剤 のいずれか	2	【発芽10日後】 アントラコール顆粒水和剤 パスポートフロアブル のいずれか			
展葉期 ~ 落花期			3	【前回から10日以内】 ベフラン液剤	◆散布回数を増やす(散布間隔をあけない)	15/20	
	3	【開花直前】 DMI剤の中から選択	4	【開花直前】 ユニックス顆粒水和剤	◆DMI剤以外の薬剤で 防除を実施する	20/20 (うち8防除暦は	
	4	【落花直後】 DMI剤の中から選択	5	【前回から10日後】 オルフィンフロアブル	◆落花直後 →前回から10日後とする	開花前に DMI加用)	
3月中下	5	【落花10~15日】 チウラム剤	6	【前回から10~14日後】 マンゼブ剤	◆基幹薬剤を変更	12/20	
6月 ~ 9月	6~13 (7 回)	マンゼブ剤、キャプタン剤 有機銅剤、ヘフラン、 QoI剤 、etc・・・・	7~14 (7 回)	基本的に従来と同じ。 ただし、 QoI剤は単用しない。	◆QoI剤は単用しない 黒星病に効果のある 保護殺菌剤を加用	17/18 (2防除暦は QoI不使用)	
10月上			15	アリエッティ C 水和剤 オーソサイド水和剤 のいずれか	◆10月上旬まで防除	18JA/20JA	
12月上中	14	石灰硫黄合剤	16	石灰硫黄合剤			

表4 令和元年度版の防除体系

1)JA等で発行している20防除暦のうち、方針に沿った防除暦の数で示した。

(2) 令和元年のリンゴ黒星病と春季病害の発生状況

令和元年の黒星病の子のう胞子飛散は4月第3半 旬から始まり、ピークは4月第6半旬であった。多 発生した平成30年と比較して、初飛散は1半旬遅 かったが、飛散のピークは2半旬ほど早かった。令 和元年は4~5月にかけて少雨で経過し、黒星病の 感染好適条件日が少なく、黒星病の初発は5月17 日と遅かった(平成30年は5月5日)。その後の 病勢進展も緩慢で、発生量も少なかった(図1)。

県内一般栽培圃場においても同様の傾向で、黒星 病の発生は全般に少なく推移したが、防除不徹底の 圃場や薬剤がかかりにくい場所で多発している事例

も多くみられた。特に、従来から黒星病の発生が多い県北部地域では、発病程度は軽微だが、多くの圃場で発 生が確認された(表5)。

他の病害の動向として、赤星病の果実被害は極めて少なかったが、県全体で発生が認められ多かった。これ

は全県的に実施した防除体系の変更により、DMI剤が使用されなかった影響と考えられた。一方、うどんこ 病は5月が少雨で経過したため場内無防除樹では例年よりも発生が多く、発生に好適な条件であったと考えら れたが、県全体で発生はやや少なかった。うどんこ病に対しても防除体系の変更が強く影響したと考えられ た。

病害名 -	県病害虫防除所に	こよる発生状況				
· · · · · · · · · · · · · · · · · · ·	発生時期	発生量	-			
黒星病	平年並	少ない	全般には発生は少ないが、防除不徹底の圃場や圃場内の薬剤がかかりにく い場所では多発している事例も多い。			
赤星病	平年並	多い	近年の中では発生が多い。発生程度は軽微であるが、広域で発生がみられた。 特に、開花期前後に DMI剤を加用しなかった地域で多い。			
うどんこ病	平年並	やや少ない	4~5月が少雨となり、多発しやすい条件であったが、現地圃場での発生は例 年より少ない。			
黒点病	平年並	やや少ない	4~5月が少雨となり、全般に発生は少なかった。			
(褐斑病)	平年並	平年並	子のう胞子の飛散量が多い4~5月は少雨で経過し、一次感染は少なかった と考えられる。しかし、6~7月の多雨により二次感染が活発になった。現地圃 場での発生状況は昨年と同様。			

表5 県内一般栽培圃場における令和元年のりんご春季病害の発生状況

(3) 薬剤耐性菌の発生状況

ア 調査方法

平成30年から実施した防除対応の効果検証と、令和2年の防除体系の構築に向け、県下広域でDMI剤耐 性黒星病菌の発生状況を調査した。調査対象は①平成30年度に県外産苗木を導入した圃場、②県外産苗木を 導入していない一般栽培圃場、③令和元年に新たに県外産苗木を導入した圃場の3つとした(表6)。

表6 薬剤耐性黒星病菌の調査概要(令和元年)

調査対象	調査圃場の選定方法・調査方法
 平成30年に 県外産苗木を 導入した圃場 	 ◆苗木の導入形態、平成30年の黒星病発生状況に応じて以下の3区分に類別 ア 調査対象外【黒星病の発生がなく、苗木先端の切り戻しを実施した場合、など】 イ 区分A【黒星病の発生はないが、導入苗木がフェザー苗など、保菌リスクが高い場合】 黒星病の発生盛期(6月頃)に1回調査 ウ 区分B【黒星病の発生があった場合】 黒星病の初発期、発生盛期、秋季の3回調査 ◆黒星病の発生が認められた場合は罹病部位をサンプリングし、遺伝子検定を実施
 県外産苗木を 導入していない 一般栽培圃場 	 ◆常発地と非常発地で圃場の選出方法を分ける ア 黒星病の常発地 防除暦を同じくする地域単位で生産規模に応じて調査園地数を設定 イ 黒星病の非常発地 黒星病の発生が認められた圃場を調査 ◆罹病部位をサンプリングし、遺伝子検定を実施
 ③ 令和元年に 新たに県外産苗木を 導入した圃場 	◆発生があった場合はサンプリングし、遺伝子検定を実施

遺伝子検定が多数になることが予想されたため、まず、DNA抽出法の効率化と回収効率の向上を図り、 InstaGene (Bio-Rad 社製)を用いたディスポループ法(近藤,未発表)を開発し、使用した。DM I 剤耐性 の遺伝子検定は八重樫(私信)に基づき、*CYP51A I* 遺伝子の変異識別用プライマーとアクチン検出用プラ イマーの2種を用いたマルチプレックスPCRにより行った。本法は1回のPCRと電気泳動により、リンゴ 黒星病菌DNAの存在確認と、薬剤耐性にかかわる*CYP51A I* 遺伝子の変異を同時に検出できる。また、Q o I 剤耐性の遺伝子検定はFontaine *et al.* (2009)の方法により、チトクローム *b* 遺伝子におけるG143A 塩基置換をRCR-RFLPにより検出した。

イ 平成30年に県外産苗木を導入した圃場の調査結果

平成30年に県外産苗木を導入した1,122 圃場のうち、耐性菌の残存リスクを考慮して658 圃場を調査対象 とした。このうち黒星病の発生が認められたのは94 圃場で、DMI剤耐性菌が確認されたのは1 圃場であっ た(表7)。なお、平成30年から継続的に調査を行った中部地区の6 圃場(表2)では、黒星病の発生は認 められなかった。

ウ 県外産苗木を導入していない圃場の調査結果

県外産苗木を導入していない圃場では、県下の550 圃場を調査し、黒星病の発生が確認された215 圃場、約1,000 サンプルについて遺伝子検定を実施した。DMI剤耐性菌は県北部の5 圃場で確認された(表7)

エ 令和元年に新たに県外産苗木を導入した圃場の調査結果

令和元年に新たな県外産苗木は156本導入されたが、このうち北部地域で導入した苗木1本でのみ黒星病の 発生が確認された。苗木伝染の場合に特徴的にみられる症状ではなく、同一圃場内の周辺樹で黒星病が発生し ていたことから、当該苗木で発生した黒星病は苗木由来ではないと考えられた。なお、遺伝子検定の結果、D MI剤耐性菌ではなかった。

	H3	0 県外産苗	圃場	県外産苗木を 導入していない圃場				計			
地域	導入 圃場数	調査 ²⁾ 圃場数	発生 (検定) 圃場数	耐性菌 確認 圃場数	調査 圃場数	発生 (検定) 圃場数	耐性菌 確認 圃場数		調査 圃場数	発生 (検定) 圃場数	耐性菌 確認 圃場数
北部(常発地)3)	288	107	78	1	539	204	5		646	282	6
東部(非常発地)	106	69	14	0	4	4	0		73	18	0
中部(非常発地)	308	100	2	0	5	5	0		105	7	0
南部位(非常発地)	420	382	0	0	2	2	0		390	2	0
計	1122	658	94	1	550	215	5		1214	309	6

表7 リンゴ黒星病菌の薬剤耐性検定結果1)(令和元年、果樹試験場)

1) DMI 剤耐性に係る遺伝子変異(CYP51A1)を検出。

2)県外産苗木を導入した 1122 圃場のうち、苗木の形態、平成 30 年の黒星病の発生状況等を考慮し、残存リスクがある圃場を選定。 3) 一部非常発地を含む。

オ DMI剤耐性菌が確認された圃場の耐性菌密度の推移

令和元年にDMI剤耐性菌が確認された6 圃場(平成30年県外産苗木導入圃場1、県外産苗木を導入して いない圃場5)では、各圃場での検定サンプル数(=発病葉数)は2~15枚と幅があったが、いずれも耐性 菌が検出されたのはこのうち1サンプル(1枚)であった(表8)。これらの圃場について、その後も継続し て調査を行ったところ、1 圃場(D圃場)でのみ2回目の調査で耐性菌が確認され、他の圃場では耐性菌が確 認されなかった。そのD圃場も3回目以降の調査では耐性菌は確認されなかった。このことから各圃場内での 耐性菌密度は極めて低いレベルであると推測された。

			調査月日		
		総発	病葉数(果実発病含む	$(P)^{2)}$	
DIVII角I的住困		DMI剤耐性菌検出率(耐性菌確認サンプル	数/検定サンプル数)	
唯论画场	1	2回目	3回目	4回目	5回目
	目回工	(耐性菌確認後1回目)	(同左2回目)	x) ²⁾ 数/検定サンプル数) 4回目 (同左3回目) (- ³⁾ 10月2日 78枚 (検定未実施) 8月26日 14枚 (検定未実施) (8月26日 602枚 0%(0/151) - -	(同左4回目)
	7月9日	8月21日	10月11日		
А	15 枚	134 枚	0枚	_3)	—
	6.7% (1/15)	0% (0/134)	3)		
	7月1日	7月10、11日	8月19日	10月2日	
В	3枚	82 枚	526 枚	78枚	—
	33.3%(1/3)	0% (0/82)	(検定未実施)	(検定未実施)	
	6月20日	7月2日	7月25日	8月26日	10月2日
С	2枚	22 枚	15枚	14枚	15 枚
	50% (1/2)	0%(0/22)	0% (0/15)	(検定未実施)	(検定未実施)
	6月20日	7月2日	7月25日	8月26日	10月2日
D	8枚	473 枚	523 枚	602 枚	597 枚
	12.5% (1/8)	2.0% (6/296)	(検定未実施)	0%(0/151)	0% (0/191)
	6月25日	7月11日	10月5日		
E	4枚	22 枚	55 枚	_	—
	25%(1/4)	0%(0/22)	0% (0/55)		
	7月16日	8月15日			
F	3枚	131 枚	—	_	_
	33.3%(1/3)	0% (0/131)			

表8 DMI剤耐性菌確認圃場における耐性菌密度の推移

1)Aは平成30年に県外産苗木を導入した圃場。他は導入していない圃場。

2)1回目調査の数値は耐性菌検定を行った葉数(果実を含む)を示す

3) 未調査

カ 調査結果のまとめ

本年度実施した調査によって、わずかではあるがDMI剤耐性黒星病菌が確認された。これらの耐性菌について、QoI剤耐性にかかわるチトクローム*b*遺伝子の変異を検定したところ、平成30年の県外産苗木で確認された黒星病菌と同様にQoI剤にも耐性を有する菌が確認された。平成29年以前は、DMI剤およびQoI剤に対する耐性菌は確認されていないが、両剤に対して耐性を有する菌が同時多発的に確認された。また、DMI剤やQoI剤の単用による淘汰圧が加わっていないため、耐性菌の密度が極めて低いと考えられた

(平成30年6月以降は両剤の単用はしていない)。以上のことから、令和元年に確認された耐性菌は平成30年に県外産苗木により伝搬された黒星病菌に由来する可能性が高いと考えられた。

調査した1,200 強の圃場のうち、耐性菌が確認されたのは6 圃場(0.5%)と低率であった。しかし、県外 産苗木導入圃場以外でも耐性菌が多く確認されている現状や、耐性菌の確認圃場が黒星病の常発地に広く分布 することから、調査圃場以外にも潜在的に存在している可能性が高いと考えられた。 4 令和2年の対応

(1) 薬剤防除体系

令和元年の調査において、低密度ながら薬剤耐性菌が県内に残存することが明らかになったことから、令和 2年も県全体で薬剤耐性黒星病に対応した防除対策を継続する。なお、耐性菌の確認圃場が黒星病の常発地で ある県北部地域に限定されたことから、常発地(県北部地域)と非常発地(主に県北部地域以外)で対策を分 け、常発地では本年度と同様の対応、非常発地では本年度より防除回数を減らし選択できる薬剤に幅をもたせ た(表9)。

なお、表9に示す「平成30年」、「令和元年」、「令和2年(その他地域)」の防除体系について、令和 元年に場内で検証したところ、黒星病と褐斑病は発生時期・発生量ともに体系間で差がなかった。うどんこ病 は「令和2年(その他地域)」と「令和元年」で発生が少なく「平成30年」で多かった(近藤, 2020)。

n ±.4 8	亚合 20 左	<u> 今</u> 和二左	令利	12年		
吁别	平成 30 年	行和元平	北信地域	その他地域		
3月下	【発芽10日前】 石灰硫黄合剤	【発芽10日前】 石灰硫黄合剤	【発芽10 F 石灰硫黄	目前】 合剤		
発芽から 開花まで	【発芽10日後】 アントラコール顆粒水和剤 パスポートフロアブル	【発芽10日後】 アントラコール顆粒水和剤 パスポートフロアブル のいずれか	【展葉期(発芽10日頃)】 アントラコール顆粒水和剤 パスポート顆粒水和剤 のいずれか	【展葉期(発芽10日頃) ~展葉3日後】		
の間	ユニックス顆粒水和剤 のいずれか	【前回から10日以内】 ベフラン液剤×1,000	【前回から10日以内】 ベンフン液剤×1,000 ベンラン液剤×1,000			
開花	【開花直前】 DMI剤の中から選択 【開花直前】 ユニックス顆粒水和剤		【開花直前】 ユニックス顆粒水和剤 +スコア顆粒水和剤 ¹⁾	【開花直前】 ユニックス顆粒水和剤 ²⁹ +DMI剤		
期間中	【落花直後】 DMI剤の中から選択	【前回から10日後】 オルフィンフロアブル	【落花直後】 オルフィンフロアブル	【落花直後】 オルフィンフロアブル ³⁾		
5月中下	【落花 10~15 日】 チウラム剤	【前回から10~14日後】 マンゼブ剤	【落花10~ マンゼブ	15 日】 剤		
6月~ 9月 (8回)	マンセブ剤、キャプタン剤、 有機銅剤、ベフラン液剤、 QoI剤2回、etc・・・・	従来と同じ QoI剤は単用しない	従来と同 QoI剤は1	ジ 単用しない		
10 月上		アリエッティC水和剤 オーソサイド水和剤のいずれか	アリエッラオーソサ	- イビ水和剤 イド水和剤のいずれか		
12月上	石灰硫黄合剤	石灰硫黄合剤	石灰硫黄	合剤		

表9	りんご防除体系	(殺菌剤)	の比較
· ·			

1) スコアの入手が困難な場合は、スコアに替えて黒星病に効果が高いDMI剤を使用可能。

2) DMI剤としてスコアを使用する場合は、ユニックスに替えてチウラム剤(トレノックス、チオノック)の使用も可能

3) オルフィンの入手が困難な場合はオルフィンに準じて効果が高いSDHI剤(ネクスターあるいはパレード)の選択も可能。

(2) 薬剤耐性菌の発生調査

黒星病の常発地である県北部地域では防除暦のエリアごとに圃場数を設定し、黒星病の発生調査とサンプリ ング、遺伝子検定を実施する計画である。黒星病の発生が極めて限定的なその他の地域では、発生が確認され た全圃場からサンプリングを行い、同様に遺伝子検定を実施する。令和元年に耐性菌が確認された6 圃場は初 発期から定期的に調査し、罹病部位の摘み取りと遺伝子検定を随時行う。また、県外産苗木が新たに導入され た場合も随時調査を行いたいと考えている。

5 黒星病菌のDMI剤に対するEC50値と菌糸伸長量の関係

分離した黒星病菌の菌糸伸長量は県外産苗木から分離した菌株と、県内一般栽培圃場から分離した菌株で顕 著な差は認められなかった。また、*CYP51A1*遺伝子の変異の有無でも差がなかった(表10)。一方、E C50値は*CYP51A1*遺伝子の変異が認められた耐性菌で高く、平山ら(2018)の報告と一致した(表10、 図4、図5)。

耐性菌では菌糸伸長量が小さい菌株でEC50値が高い傾向がみられたが(図4)、変異の有無で菌糸伸長 量の平均に差がないことから、EC50値の上昇に伴い菌糸伸長量が減少するのではないと考えられた。

		松田	校堂	菌糸伸長量(mm)		フェナリ	フェナリモルに対する EC50(ppm)				ジフェノコナゾールに対する EC50(ppm)			
黒星病菌の由来	ome	保取	使止 菌株数	平均	標準 誤差	平均	最小値	最大値	標準 誤差	平均	最小値	最大値	標準 誤差	
県外産苗木 -	R	2018	101	6.251	0.111	1.446	0.132	7.359	0.035	1.038	0.017	5.683	0.105	
	S	2018	41	6.222	0.136	0.601	0.020	1.748	0.054	0.067	0.000	0.291	0.011	
	S	2015	4	6.988	0.864	0.415	0.206	0.635	0.091	0.022	0.000	0.071	0.017	
県内一般圃場	S	2016	18	8.037	0.389	0.540	0.172	0.951	0.062	0.017	0.000	0.066	0.005	
	S	2018	100	6.262	0.104	0.661	0.057	1.604	0.031	0.112	0.000	0.577	0.012	

表10 分離菌株の菌糸伸長量とDMI剤に対するEC50

図4 県外産苗木から分離したリンゴ黒星病菌の菌糸伸長量とEC50値

図5 長野県内の一般栽培圃場から分離したリンゴ黒星病菌の菌糸伸長量とEC50値

6 おわりに

県外産苗木導入に伴い発生した薬剤耐性リンゴ黒星病菌の根絶をめざし、平成30年6月以降、県全体で対 策に取り組んできたが、耐性菌は低密度ながら常発地において広い範囲に存在すると考えられた。別の見方を すると、全県的に実施した取り組みにより、耐性菌密度を極めて低く抑え込むことができた考えることができ る。石井(2003)は、薬剤耐性菌の密度の薬剤の効果の関係について、キュウリ褐斑病菌やうどんこ病菌のQ o I 耐性の事例として「耐性菌が1割存在すると薬剤の効果が半減する」と報告している。現時点で本県にお いては、DMI剤とQoI剤のリンゴ黒星病に対する効果は期待できる菌密度にあると考えられる。赤星病や 果実腐敗性病害(炭疽病、輪紋病)防除にとって、DMI剤とQoI剤は非常に効果的な薬剤であるため、将 来的に両薬剤を黒星病防除にも活用できるよう、耐性菌密度を低いレベルに維持し続けることが重要と考え る。今後も薬剤防除体系だけでなく、耕種的防除も取り組んだ総合防除により、黒星病全体の発生量を低下さ せる方針である。

2年間の取組みによって、DMI剤の代替としたAP剤(ユニックス顆粒水和剤)、SDHI剤(オルフィ ンフロアブルなど)の黒星病に対する効果や特性、両剤による体系防除の効果が明らかになり、黒星病に対し ては両剤を基幹とした防除体系によって対応できると考えられた。しかし、本防除体系下において赤星病の発 生が顕在化しており、春季病害に対する総合的な評価については検討の余地が残った。今後、新規SDHI 剤、新規系統薬剤の春季の各種病害に対する効果、体系化に伴う実用性について総合的な検討を継続する必要 がある。また、今回のDMI剤耐性黒星病菌はQoI剤にも耐性を持つ可能性が高いことから、DMI剤耐性 黒星病対策を継続する間、QoI剤(単剤)の単用を避ける必要がある。しかし、保護殺菌剤を加用したQo I剤(単剤)の使用は、防除コストの増加、薬液による果実の汚れなどの課題があり、現地から改善が求めら れている。今後もQoI剤と保護殺菌剤との混合剤、他系統の薬剤について、黒星病や果実腐敗性病害等の防 除効果や実用性の検討を継続する。

薬剤耐性菌の特性や、従来の感受性菌との比較は十分ではないが、DMI剤に対するEC50値が上昇した 菌株はCYP51A1遺伝子が変異し、菌糸伸長量が小さい傾向が認められた。今後、これら感受性が低下した 黒星病菌の密度推移を調査し、DMI剤の実用性、防除体系における位置づけを検討する必要がある。

最後に、薬剤耐性菌発生地域からの苗木導入は黒星病の耐性菌密度を急激に高めるリスクがある。苗木によ る伝搬を防止するため、苗木への感染時期や発病助長要因を明らかにするとともに、苗木の無病化技術の開 発、苗木生産地と導入地が連携できる体制の整備が求められる。

参考文献

石井英夫(2003) 薬剤耐性菌の新たな展開と防除のあり方.北日本病虫研報 54:1-6.

江口直樹・八重樫元・横澤志織・笹脇彰徳・伊藤伝(2019) リンゴ黒星病の苗木による伝搬. 日植病報. 85:228.

- 近藤賢一(2020)長野県における薬剤耐性リンゴ黒星病に対するこれまでの対応. 令和元年度寒冷地果樹研究会資料
- 平山和幸・花岡朋絵・新谷潤一・對馬由記子・赤平知也(2017) 青森県における DMI 剤耐性リンゴ黒星病菌の発生. 北日本病虫研報. 68:108-114.
- 平山和幸・赤平知也・花岡朋絵(2017) 青森県における QoI 剤耐性リンゴ黒星病菌の発生. 北日本病虫研報.68:1 15-119.
- 八重樫元・平山和幸・赤平知也・伊藤伝(2018)青森県で分離されたリンゴ黒星病菌における CYP51A1 遺伝子の 変異と DMI 剤感受性の関連. (2018) 日植病報. 84:56.

Fontaine, S., Remuson, F., Fraissinet - Tachet, L., Micoud, A., Marmeisse, R., Melayah, D., (2009) Monitori ng of Venturia inaequalis harbouring the QoI resistance G143A mutation in French orchards as revea led by PCR assays. Pest Manag Sci(65):74-81.

本研究の実施にあたっては、農研機構生研支援センター「イノベーション創出強化推進事業(平成 30 年)」、農林水産省「防除体制再編事業(平成 30 年度~令和元年度)」の支援を受けた。

三重県における灰色かび病菌の薬剤感受性検定体制の構築

Construction of fungicides susceptibility monitoring system for gray mold caused by *Botrytis cinerea* in Mie Prefecture

三重県農業研究所

川上 拓

Taku Kawakami, Mie Prefecture Agricultural Research Institute, 530 Ureshinokawakita-cho, Matsusaka City, Mie,515-2316, Japan

Abstract

The susceptibility of major fungicides to gray mold caused by *Botrytis cinerea* has been tested in Mie prefecture, Japan since the 1980s. We have reported the outbreak of resistant isolates to several fungicides. In addition, these investigations made it possible to understand the fungicide-susceptibility. However, in recent years, it's getting harder to monitor fungicide sensitivity frequently due to staff shortages and costs. Therefore, Mie Prefecture established the Plant Protection Epidemiological Review Conference, and the parties have discussed necessary fungicides for monitoring. We also needed to provide the data based on scientific evidence to grasp the fungicide susceptibility.

In order to grasp the occurrence trends of resistant isolates of gray mold and to conduct the effective control, we examined the chemical susceptibility of the isolates to major fungicides. In addition, we discussed the relationship between the application of fungicides and the occurrence of resistant strains.

In almost all of the investigated fields, resistant isolates to high risk fungicide such as QoI and SDHI were observed. On the other hands, resistant strains to medium risk fungicides such as mepanipyrim and from low to medium risk fungicides such as fludioxonil were not observed despite multiple spraying. In other words, the occurrence trends of these major fungicides-resistant isolates were almost consistent with the risk defined by FRAC(Fungicide-Resistance-Action-Committee). Based on these results, it is necessary to discuss the fungicides required for the monitoring among the stakeholders.

1. はじめに

灰色かび病菌(*Botrytis cinerea*)はライフサイクルが短く、胞子形成量が多いことから薬剤耐性を獲得しやすい菌として知られている(Leroux *et al*,2002)。本菌の薬剤耐性菌は古くから知られており、1970年代にはベンズイミダゾール系殺菌剤に対する耐性菌の発生が報告されている(山本,1975)。三 重県では1980年代から本菌に対する薬剤感受性検定を実施しており、これまでにベンズイミダゾール 系剤、ジカルボキシイミド系剤、*N*-フェニルカーバネート系剤3剤に対する耐性菌(黒田・冨川,1999) や、アニリノピリミジン系剤(鈴木ら,2011)、コハク酸脱水素酵素阻害剤(SDHI剤)(川上ら,2017b;2019) 等について耐性菌の発生を報告している。アニリノピリミジン系剤については耐性菌の発生を確認した 当時、実用濃度レベルでの薬剤防除効果の低下は認められなかった。現在も耐性菌は一定程度の発生で 抑えられていることから、早期に感受性検定を行うことにより、耐性菌の蔓延を防ぐことができると考 えられる。

このような目的から、本県を含む全国の公設試を中心に主要殺菌剤に対する本菌の感受性モニタリン グが実施されている。しかしながら、検定にかかる労力やコスト等の面からモニタリングの回数は限ら れている。また、日々開発されている多くの殺菌剤について検定を行うことは困難である。

三重県では、灰色かび病菌を含む薬剤感受性検定の実施体制について、その方向性を関係者で検討しているところである。本講演では、本県の取り組みについて以下に紹介する。

2. 三重県における灰色かび病菌の薬剤感受性検定の変遷

(1) ベンズイミダゾール系剤、N-フェニルカーバメート系剤、ジカルボキシイミド系剤およびフェ ニルピロール系殺菌剤

前述したように、本県ではこれまで多くの薬剤について感受性検定を実施してきた(表1)。ベンズイ ミダゾール系剤(ベノミル、チオファネートメチル)、*N*-フェニルカーバメート系剤(ジェトフェンカ ルブ)については、1995年から感受性検定を実施しており、検定当初から高い耐性菌率を示していた。 これらの薬剤は、灰色かび病に対して防除効果が期待できない状況であったため、毎年検定する必要は ないと判断し、現在では検定を行っていない。一方、ジカルボキシイミド系剤(イプロジオン)につい ても検定当初耐性菌率が非常に高かったが、2005年頃から耐性菌率の低下傾向が続いている(図1)。 感受性回復状況について考察するため、現在もモニタリングを継続している。

フェニルピロール系殺菌剤であるフルジオキソニルは、灰色かび病菌に卓効を示す重要な薬剤であり、 灰色かび病が問題となる果菜類の生産現場で重宝されている。検定開始以来、長期間にわたって感受性 が低下した事例は認められていなかったが、2012年に感受性低下が疑われる菌株を初めて確認した。 その後多くはないが、感受性低下菌が継続して確認されている(川上ら、2017a)。今のところ、実用濃 度レベルでの防除効果低下には至っていないが、現在もその動向について注視している。

表1三重県における灰色かび病菌	菌薬剤感受性検定の変遷(2	.001年以降)			
グループ名	殺菌剤	供試年度			
MBC殺菌剤	ペノミル	2001			
(メチルベンゾイミダゾールカーバメート)	チオファネートメチル	2002~2006, 2013			
N-フェニルカーバメート	ジエトフェンカルブ	2001~2006, 2015			
フェニルビロール	フルジオキソニル	2001~2020			
2010 July 1710	プロシミドン	2001~2005			
ンカルホキンイミト	イプロジオン	2001~2020			
アニリノビリミジン	メパニビリム	2002~2020			
ビスグアニジン	イミノクタジンアルベシル酸塩	2005~2010			
抗生物質	ポリオキシン	2005~2010			
	フェンフェキサミド	2007~2020			
KKL段图向	フェンビラザミン	2015~2018			
	ポスカリド	2007~2018			
	ペンチオピラド	2008~2020			
SDHI殺菌剤	フルオピラム	2016, 2017			
	イソビラザム	2018			
	ピラジフルミド	2019~2020			
	ビリベンカルブ	2011~2019			
QoI殺園剤	アゾキシストロビン	2012~2020			

(2) QoI 剤、SDHI 剤および KRI 殺菌剤

FRAC(Fungicide Resistance Action Committee)は、QoI 剤を耐性菌発生リスク「高」に位置付けて いる。リスクの高さが示すように、すでにイチゴおよびトマト等多くの作物において QoI 剤耐性菌発生 の報告がある(Banno et al,2009; Ishii et al,2009)。三重県においても 2011 年からピリベンカルブ、 2012 年からアゾキシストロビンを供試している(表1)。2012~14 年にかけて行った検定結果では、 QoI 剤の耐性菌率は平均 20.3%であり(辻ら,2015)、検定当初から耐性菌が高率に発生している状況 であった。現在もその傾向は変わっていないどころか、耐性菌率は上昇傾向にある(図2)。一方で、こ こ数年の結果ではあるが、検定圃場における QoI 剤の使用率は減少傾向にあることから(データ略)、 使用を控えても感受性の回復が生じにくい薬剤であると考えている。また、毎年のモニタリング結果は、 普及センターを通じ生産者にフィードバックされ防除プランに活用されている。結果として、薬剤使用 率が低下してきているとも考えられ、本剤耐性菌による影響は最小限に抑えられている。

灰色かび病対策として近年最も上市が多い薬剤である SDHI 剤は、FRAC の耐性菌発生リスク「中~ 高」に位置づけられており、すでに耐性菌の発生報告がなされている(Fernández-Ortuño *et al*,2012)。 本県では、ボスカリドについては 2007 年から検定を開始し、2010 年には感受性低下菌を確認している (鈴木ら,2012)。また、同系統薬剤であるペンチオピラドについてもほぼ同時期に検定を開始している (表1)。近年、これら2剤の耐性菌率は上昇傾向にあることから(図3)、これから現場での普及が進 むと考えられる数種類の新規 SDHI 剤についても検定を開始し、耐性菌の発生状況や、各薬剤間の交さ 耐性の状況などについて注視している。

KRI 殺菌剤(フェンヘキサミド、フェンピラザミン)については、感受性検定の結果、耐性菌率が近 年約 10%程度となっており、耐性菌の発生拡大には至っていない(データ略)。FRAC の耐性菌発生リ スクも「低~中」であり、耐性菌を確認していない圃場においてローテーション散布における作用機構 の異なる薬剤の一つとして使用されている。

25

3. 灰色かび病菌の耐性菌発生動向の把握と殺菌剤散布との関係解析

通常行っている年1回のモニタリングにより各種薬剤耐性菌の長期的な発生動向を把握してきたが、 翌年には検定圃場が別の圃場に変わるといったこともあり、実際に検定圃場において耐性菌がどういっ た発生動向を示すのかが不明な点が多かった。そこで、耐性菌の短期的な発生動向および当該殺菌剤の 散布との関係を把握するため、以下の試験を実施した。

(1) 主要殺菌剤耐性菌の発生動向

2016年4月~7月(2015年作)、2016年10月~2017年7月(2016年作)および2017年10月~2018年7 月(2017年作)にかけて、三重県内のトマト施設栽培の15圃場において、おおよそ1か月に1度灰色か び病菌を採取した。得られた計447菌株について、トマト灰色かび病に登録のある主要殺菌剤計8剤に 対する感受性を既報の手法を参考に評価した(表2)。なお、最終的な感受性評価は培地検定に加 え、キュウリ子葉による生物検定の結果を基に判断した。

FRAC コード	殺菌剤名		検定方法		検定方法 検定培		検定濃度 (ppm)	培養温度 時間	耐性菌の判定基準
2	イプロジオン水和剤		木曽·山田(1998)	PDA	5	20℃ 2日間	菌そう生育があれば中度耐性菌, 無処理比80%以上の 菌そう生育があれば高度耐性菌と判定		
12	フルジオキソニル水和剤		平田(2000)		0.2	25℃ 2日間	菌そう生育がある菌株について生物検定を行い,実用 濃度での病斑形成抑制率60%未満の菌株を耐性菌と判定		
	アゾキシストロビン水和剤	菌そう ディスク法	間佐古(2009)				100ppm含有培地上で菌糸生育抑制率80%未満の菌株を 耐性菌と判定		
11	ピリベンカルブ水和剤		尾崎·小野(2016)	+ SHAM 1mM (Salicylhydro- xamic Acid)	1, 100	20℃ 3日間	アゾキシストロビン耐性菌,かつビリベンカルブ100ppm含有培 地で菌糸生育抑制率80%未満の菌株について生物検定を行 い,実用濃度で病斑形成抑制率が60%未満を耐性菌と判 定。60%以上の菌株について,培地検定でのアゾキシストロビ ンの菌糸生育抑制率50%未満を弱耐性菌と判定		
9	メパニピリム水和剤		高垣(2009)	ECA	3	20℃			
17	フェンヘキサミド水和剤	ペーパー	沢田(2001)	TGA	1	4日間	菌そう生育がある菌株について生物検定を行い, 		
7	ボスカリド水和剤	ディスク法	绘木,里田 (2010)	VBA	1	20℃	····スロルスは、Connyay」レルスロークコード0076不同の国外を言うに因 と判定		
/~~	ペンチオピラド水和剤		動小・素田(2010) YBA		T	7日間			

表2 供試殺菌剤および検定方法

調査圃場のうち、灰色かび病の発生が調査期間を通して認められた10圃場(圃場A~J)について各 殺菌剤に対する耐性菌の発生動向を調査した。その結果、全ての圃場で、調査期間中のいずれかの時 期にFRACの耐性菌発生リスクが、「高」に分類される殺菌剤のQoI剤(アゾキシストロビン,ピリベン カルブ)、「中~高」に分類される殺菌剤のSDHI剤(ボスカリド,ペンチオピラド)およびジカルボキ シイミド系剤(イプロジオン)に対する耐性菌が認められた(表3)。一方、「低~中」リスクのKRI 系殺菌剤(フェンヘキサミド)耐性菌を確認した圃場は少なく、その発生は3圃場のみであった(デー タ略)。また、それらの圃場において、耐性菌は長期間にわたって検出されることはなかった。さら に、「中」リスクのアニリノピリミジン系剤(メパニピリム)および「低~中」リスクのフェニルピロ ール系剤(フルジオキソニル)耐性菌は、試験期間中すべての圃場で認められなかった。

表3 各圃場における主要殺菌剤に対する耐性菌の発生動向(一部圃場の結果を抜粋)

圃場A	

			灰色かび病		耐性リスク(FRAC)										
	作付年	採取月	発生程度	ř	â		中~高		中	低~中					
			(無一嵒)	AZ	PY	BO	PE	IP	ME	FU	FE				
2015		4	中	R	R	S	S	S	S	S	S				
	5	少	R	R	S	S	S	S	S	S					
	作付年 3 2015 2016 2017	6	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.				
		7	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.				
		10	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.				
		12	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.				
		1	中	S	S	R	S	S	S	S	S				
	2016	3	少	R	W R	R	R	S	S	S	S				
	作付年 2015 2016 2017	4	中	R	W R	R	S	S	S	S	S				
		5	微	S	S	R	S	S	S	S	S				
		7	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.				
		10	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.				
		12	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.				
2015	1	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.					
	3	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.					
			444	_		-	-	-	-	-	-				

		灰色かび病				(FRAC)					
作付年	採取月	発生程度	5	5		中~高		中	低~中		
		(無-甚)	AZ	PY	BO	PE	IP	ME	FU	FE	
	4	中	S	S	S	S	MR	S	S	S	
2015	5	多	S	S	S	S	MR	S	S	S	
2015	6	3	S	S	S	S	MR	S	S	S	
	7	多	S	S	S	S	MR	S	S	S	
	10	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	
	12	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	
	1	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	
2016	3	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	
	4	微	S	S	S	S	MR	S	S	R	
	5	微	S	S	R	S	S	S	S	S	
	7	中	R	S	R	S	S	S	S	S	
	10	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	
	12	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	
	1	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	
2017	3	微	R	WR	R	R	MR	S	S	S	
	4	微	R	S	R	R	MR	S	S	S	
	5	少	R	S	R	R	MR	S	S	S	
	7	心	R	S	R	R	MR	S	S	S	

圃場I										
	採取月	灰色かび病 発生程度	耐性リスク(FRAC)							
作付年			5	高		中~高			低~	~中
		(無-甚)	AZ	PY	BO	PE	IP	ME	FU	FE
	4	微	S	S	S	S	MR	S	S	S
2015	5	微	S	S	S	S	MR	S	S	S
2015	6	微	S	S	S	S	MR	S	S	S
	7	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
	10	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
2016	12	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
	1	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
	3	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
	4	微	R	WR	R	R	S	S	S	S
	5	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
	7	微	R	S	R	S	S	S	S	S
	10	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
	12	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
	1	微	R	W R	R	R	S	S	S	S
2017	3	微	R	S	R	R	S	S	S	S
	4	微	S	S	R	R	S	S	S	S
	5	少	R	R	R	R	S	S	S	S
1										

山-mJ										
		灰色かび病 発生程度	耐性Jスク(FRAC)							
作付年	採取月		高		中~高			中 低~		~中
		(無-甚)	AZ	PY	BO	PE	IP	ME	FU	FE
	4	少	R	R	S	S	S	S	S	S
2015 5 6 7	5	微	S	S	S	S	S	S	S	S
	6	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
	7	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
	10	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
2016 12 2016 3 4	12	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
	1	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
	3	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
	4	微	R	WR	S	S	S	S	S	S
	5	微	S	S	S	S	S	S	S	S
	7	少	S	S	S	S	S	S	S	S
	10	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
	12	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
	1	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
2017	3	無	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
	4	微	R	WR	S	S	S	S	S	S
	5	微	R	R	R	S	S	S	S	S
	7	微	S	S	S	S	S	S	S	S

R:耐性菌, MR:中度耐性菌, S:感受性菌, N.T.:灰色かび発生なしのため,供試せず

各採取月において耐性菌が確認された月をR,MR,供試菌株が全て感受性菌であった月をSと表記した。

灰色かび病の発生程度は,各圃場における発生状況に応じて,無,微,少,中,多,甚の6段階で評価した。

AZ:アゾキシストロビン,PY:ピリベンカルブ,BO:ボスカリド,PE:ベンチオピラド,IP:イプロジオン,ME:メパニピリム,FU:フルジオキソニル,FE:フェンヘキサミドの略

(2) 殺菌剤散布と主要殺菌剤耐性菌発生との関係解析

次に、耐性菌の発生動向を調査した10圃場について、各殺菌剤の使用圃場率および当該殺菌剤散布と 耐性菌率の関係について解析した。

①高リスク殺菌剤: QoI剤 (アゾキシストロビン, ピリベンカルブ)

調査圃場における当該薬剤の使用圃場率は、アゾキシストロビン剤が3.3%、ピリベンカルブ剤が 10.0%であり、使用圃場は少なかったが、アゾキシストロビン剤の耐性菌率は24.8%と高く、ピリベン カルブ剤も同様であった(表4)。また、QoI剤を散布した圃場では、散布のなかった圃場よりも耐性菌 が多く検出される傾向があり、特にピリベンカルブ剤ではその傾向が顕著であった(表4)。

圃場Aでは、2015年4月にQoI剤耐性菌を確認し、その後も調査期間中継続して耐性菌を確認した (図4)。さらに、圃場Gでは調査期間を通じQoI剤の散布が一度もないにも関わらず、2016年作以降 継続的に耐性菌が確認された(図4)。この傾向はその他複数圃場(E、F、I、J)でも認められた(デ ータ略)。これらの結果は、県内全域で実施している年1回の薬剤感受性検定の傾向とも一致する結果 であった。竹内・長井(1985)は、薬剤耐性灰色かび病菌の胞子が時期を問わずハウス内外に飛散し ていることを報告している。このことから、これら耐性菌がハウス周辺より飛散、侵入した可能性が 考えられた。 ②中~高リスク殺菌剤: SDHI 剤 (ボスカリド,ペンチオピラド)、イプロジオン

ボスカリド剤の使用圃場率は 3.3%と少なかったものの、耐性菌率は 24.9%と供試殺菌剤の中で最も 耐性菌率が高かった(表4)。また、同系統の殺菌剤であるペンチオピラド剤は今回供試した殺菌剤の中 で最も散布が多かった。さらに、圃場 D、E のようにペンチオピラド剤散布圃場で同系統のボスカリド 耐性菌が増加している事例が認められた(図4)。この傾向はその他複数圃場(圃場 A、G、I)でも認め られた(データ略)。これらの圃場において確認されたペンチオピラド耐性菌は、多くがボスカリドに対 して交さ耐性を示していた。Fernández-Ortuño *et al* (2017)は、両剤に交さ耐性を示す菌が sdhB 遺 伝子の 272 番目のアミノ酸変異(H272R/Y)を有することを報告しており、今回の調査においても同様 である可能性が考えられる。

一方、イプロジオン剤については、当該殺菌剤散布の有無による耐性菌率に有意な差は認められな かったものの(表4)、当該殺菌剤の散布があった2015年には耐性菌率は高かったが、散布のなかった 2016年,2017年には耐性菌率が低下していた(図4、圃場E)。また、圃場Iでも同様の傾向を示して おり(データ省略)、本剤の使用を控えることで耐性菌が低減する可能性が示唆された。このことは ジカルボキシイミド系殺菌剤耐性菌が、感受性菌と比べ越夏後の生存率が低いこと(竹内・長 井,1984) や毎年のモニタリング結果からも説明できる。

③中リスクおよび低~中リスク殺菌剤:メパニピリムおよびフルジオキソニル

メパニピリム剤使用圃場における1作あたりの散布回数は平均1.6回、フルジオキソニル剤について は平均1.9回であった。すなわち、これら殺菌剤の使用圃場では、1作中の散布が複数回にわたる圃場 が多かったが、調査期間を通じ両剤の耐性菌は確認されなかった(表4、図4圃場F)。

							1/=4	VD ## #1 = #1 = /r					
	FRAC		調査期間中の 当該殺菌剤	当該殺菌剤を使用	当該殺菌剤使用圃場に	耐性菌率	当IB 散れ	散布あり				検定結果	
耐性リスクコード		殺困剤名	使用圃場率 (%)	したのべ圃場数 ²⁾ 対象圃場数 ²⁾	おける1作あたりの 平均使用回数 ³⁾	(耐性菌数/ 採取菌株数)	耐性菌率 ⁴⁾ (%)	耐性菌数/ 菌株数	耐性菌率 ⁵⁾ (%)	耐性菌数/ 菌株数	(χ ² 値 ⁶⁾)	
	11	アゾキシストロビン	3.3	1/30	1.0	24.8	35.7	15/42	23.5	76/324	2.99	n.s.	
	11	ピリベンカルブ	10.0	3/30	1.0	17.4	33.3	14/42	15.7	51/324	7.87	**	
	7	ボスカリド	3.3	1/30	1.0	24.9	28.5	89/312	1.9	1/52	16.96	**	
中~高	/	ペンチオピラド	90.0	27/30	1.8	10.1	12.2	38/312	1.9	1/52	4.72	*	
	2	イプロジオン	40.0	12/30	1.4	20.8	18.1	27/149	17.3	38/220	0.04	n.s.	
中	9	メパニピリム	63.3	19/30	1.6	0.0	0	0/197	0	0/154	0	n.s.	
12 低~中 17	12	フルジオキソニル	70.0	21/30	1.9	0.0	0	0/203	0	0/154	0	n.s.	
	17	フェンヘキサミド	26.7	8/30	1.4	1.9	9.1	6/66	1.2	3/245	11.43	**	

表4 供試薬剤の散布状況、散布の有無と耐性菌率の関係

1)対象圃場のうち、栽培期間中に当該殺菌剤を使用したのべ圃場数を計測した。

2)発生動向を調査した圃場(10圃場)×調査年数(3年)=30圃場(のべ数)を対象圃場とした。

3) 当該殺菌剤を使用した圃場において、1作中における合計散布回数を計測し平均使用回数を算出した。

4) 当該作において菌株採取までに当該殺菌剤の散布があった場合の菌株のうち,耐性菌数を計測することにより耐性菌率を算出した。

5) 当該作において菌株採取までに当該殺菌剤の散布がなかった場合の菌株のうち,耐性菌数を計測することにより耐性菌率を算出した。

6) χ2検定により,当該殺菌剤の散布があるグループとないグループで耐性菌率に差があるか解析した。

検定結果の**は,有意水準1%未満,*は5%未満の危険度で有意差あり。n.s.は有意差なし。

圃場A (QoI剤)

圃場G (QoI剤)

図4 各種耐性菌の発生推移と薬剤散布との関係(一部圃場、薬剤の結果を抜粋)

今回実施した試験では、灰色かび病菌における主要殺菌剤に対する耐性菌は、FRACの定める耐性菌 発生リスクの高い殺菌剤で多く発生するとともに、複数年にわたり発生が確認される圃場が認められた。 一方、耐性菌発生リスクの低い殺菌剤では、耐性菌の発生そのものが少なく、発生が確認されたとして も一時的であった。また、薬剤散布がある場合、散布がない場合と比べ耐性菌率が高くなる傾向が認め られたが、リスクの高い薬剤では、使用圃場率や1作あたりの使用回数に関わらず耐性菌が発生してい ることが明らかとなった。先に述べたように、周辺圃場からの飛散、圃場外からの持ち込みや環境適応 能の違いなどが可能性として考えられるが、詳細については今後の調査が必要である。また、ペンチオ ピラド剤は現場での使用頻度が高くなっており、他の SDHI 剤耐性菌についても今後の発生に注意を要 する。

4. 三重県植物防疫検討会議の設立

近年、灰色かび病に登録のある殺菌剤は増えてきており、農家の薬剤選択の幅が広がっている一方で、 三重県では薬剤感受性検定に供試する薬剤が増えてきている。そのため、作業面での負担が増えている だけでなく、感受性評価をすべき薬剤の選択も難しくなっていることから、検定を実施する研究所の意 向だけでなく、今まで以上に普及センターや病害虫防除所からの要望や現場の薬剤使用状況を踏まえた 上で薬剤感受性検定を実施する必要が出てきている。

三重県植物防疫検討会議は、病害虫や雑草の発生動向等を注視し、防除を要する病害虫や雑草に関す る防除対策の情報を農業者等に提供することにより、生産現場での適切な防除対策を推進するため、 2014年に設立された(図5)。本検討会議は、三重県農林水産部を事務局とし、農業研究所、普及セン ターおよび病害虫防除所からなる。検討会議における病害虫雑草抵抗性部会では、全国の耐性菌、抵抗 性害虫および抵抗性雑草の発生状況に加え、県内における薬剤感受性モニタリングの結果や計画につい て関係者間で情報共有することとなっている。そのため、研究所が実施する感受性検定における供試薬 剤についても関係者間で情報共有、議論ができる体制が整っている。

図5 三重県植物防疫検討会議の概略

5. 三重県における薬剤感受性検定体制の構築と今後に向けて

これまで我々は、耐性菌の発生動向を把握するため、時間をかけて感受性モニタリングを行ってき たが、今回の試験結果から、灰色かび病菌の耐性菌の発生動向については、FRACの耐性菌発生リスク に基づき把握できるものと考えられた。山口(2007)は、保護殺菌剤を柱とした防除体系でも、防除 適期に散布することで効果的な防除ができるとともに、感受性が低下した殺菌剤の散布回数を減らす ことにより感受性回復が期待できるとしている。今回の試験で耐性菌の発生が比較的少なかった圃場 B では保護殺菌剤であるTPN剤を効果的に使用しており,他系統殺菌剤とのローテーション散布が遵 守されていた。今後、保護殺菌剤を組み込んだ防除体系で、各薬剤耐性菌がどの程度感受性が回復で きるのかについてさらに検討を進めたい。

山本(2019)は、薬剤抵抗性発達を抵抗性リスクとして見える化し、その解決策としてリスク分析 の三つのステップ(抵抗性リスク評価、管理、リスクコミュニケーション)を提案している。今回得 られた試験結果(リスク評価)等も踏まえ、三重県植物防疫検討会において抵抗性リスクの管理体制 をさらに整える必要がある。その中で次年度以降の供試薬剤の選択やモニタリング間隔等についても 関係者間で検討し、薬剤感受性検定体制の構築を図りたい。

また、鈴木(2019)が提案しているように、耐性菌対策にはIPM技術の活用も求められる。FRAC コードの異なる殺菌剤によるローテーション防除に加え、早朝加温や換気による施設内湿度低下など 耕種的・生物的・物理的な方法を組み合わせて防除することにより、抵抗性病害虫の発生リスクを大 きく軽減できる。今後は、ローテーション散布等の従来から言われていた薬剤による耐性菌対策につ いて周知、徹底していくこと、IPMの考えについて生産現場で実践していくことが重要である。その ための技術開発を引き続き進めていきたい。

引用文献

- 1) Banno, S.*et al* (2009) Characterization of QoI resistance in *Botrytis cinera* and identifivation of two types of mitochondrial cytochrome *b* gene.Plant Pathology.58:120-129.
- 2) Ferna Indez-Ortun Io.*et al* (2012) Resistance to Pyraclostrobin and Boscalid in *Botrytis cinerea*

Isolates from Strawberry Fields in the Carolinas.Plant Disease.96(8):1198-1203.

- 3) Ferna□ndez-Ortun□o.et al (2017) Resistance to the SDHI Fungicides Boscalid, Fluopyram, Fluxapyroxad, and Penthiopyrad in Botrytis cinerea from Commercial Strawberry Fields in Spain. Plant Disease.101(7):1306-1313.
- 4) 平田明靖(2000) 灰色かび病菌のフルジオキソニルに対する感受性検定法. 第10回殺菌剤耐性菌研 究会シンポジウム講演要旨集:27-33.
- 5) Ishii, H.*et al* (2009) Characterisation of QoI-resistant field isolates of *Botrytis cinerea* from citrus and strawberry.Pest Manag. Sci. 65(8): 916-922.
- 6)間佐古将則(2009)カンキツ灰色かび病菌.植物病原菌の薬剤感受性検定マニュアル II:121-124.
- 7) 木曽 皓・山田正和(1998)(6) 野菜類灰色かび病菌. 植物病原菌の薬剤感受性検定マニュアル:28-33.

- 8)黒田克利・冨川章(1999)トマト灰色かび病菌の薬剤耐性の推移および胞子形成に及ぼすポリエ ステル系硬質フィルムの影響.関西病虫研報 41:45-46.
- 9)川上拓ら(2017a)三重県における野菜類灰色かび病菌のフルジオキソニル感受性低下菌の発生. 関西病虫研報 59:27-31.
- 10) 川上拓ら(2017b) 三重県における新規 SDHI 剤フルオピラム耐性灰色かび病菌の発生確認. 日植病報(講要) 83(3):189-190.
- 11)川上拓ら(2019)三重県における新規 SDHI 剤イソピラザム耐性灰色かび病菌の発生確認.日植病報(講要)85(3):251.
- 1 2) Leroux, P.et al.(2002) Mechanisms of resistance to fungicides in field strains of *Botrytis* cinerea. Pest Manage. Sci. 58 (9) : 876–888.
- 13) 尾崎剛一・小野友慈(2016)野菜類灰色かび病:ピリベンカルブ(培地・生物・遺伝子検定).植物防疫 70(9):46-50.
- 14) 沢田治子(2001)フェンヘキサミド(パスワード) 感受性の検定方法とベースラインデータ.第
 11回殺菌剤耐性菌研究会シンポジウム講演要旨集:23-30.
- 15) 鈴木啓史(2019) GAP における IPM と薬剤抵抗性病害虫管理.植物防疫 73(10):13-20.
- 16) 鈴木啓史ら(2011) メパニピリム耐性灰色かび病菌の発生. 日植病報 77:1-6.
- 17) 鈴木啓史ら(2012) ボスカリド感受性の低下した灰色かび病菌の YBA 寒天培地ペーパーディス ク法による検出. 日植病報(講要)78(1):56.
- 18) 鈴木啓史・黒田克利(2010)灰色かび病菌のペンチオピラドとボスカリドに対する感受性. 関西病虫研報 (52):45-51.
- 19)高垣真喜一(2009)野菜類灰色かび病菌.植物病原菌の薬剤感受性検定マニュアル II:38-40.
- 20) 竹内妙子・長井雄治(1984) ジカルボキシイミド系殺菌剤耐性灰色かび病菌の生存力. 日植病報 50:273-275.
- 21) 竹内妙子・長井雄治(1985) 薬剤耐性灰色かび病菌の胞子飛散消長. 千葉県農業試験場研究報告 26:121-128.
- 22) 辻朋子ら(2015) 三重県におけるQoI剤耐性野菜類灰色かび病菌の発生. 植物防疫69(8):507-510.
- 23)山本敦(2019)殺虫剤抵抗性管理 農業生産現場への普及の取組み.植物防疫73(12):30-37.
- 24)山本磐(1975)ベノミル耐性灰色かび病菌の野菜における発生と対策.植物防疫29(5):32-34.
- 25)山口純一郎(2007)病害虫防除技術の最前線.九州病害虫防除推進協議会連絡試験成果集8:1-19.

ピーマンうどんこ病に対する防除体系と本病原菌の QoI 剤と SDHI 剤 に対する感受性検定 Control system against bell pepper powdery mildew and sensitivity to QoIs and SDHIs of *Leveillula taurica*

茨城県農業総合センター園芸研究所 宮本拓也

Takuya Miyamoto

Horticultural Research Institute, Ibaraki Agricultural Center, 3165-1 Ago, Kasama, Ibaraki 319-0292, Japan

Abstract

Bell pepper production in Ibaraki Prefecture, Japan, utilizes natural enemies to control pests such as thrips and whitefly. To maximize the predation potential of natural enemies, pesticide including the fungicides were limited the modes of action. In this study, we investigated that the control efficacy of various fungicides against bell pepper powdery mildew (caused by *Leveillula taurica*) and developed the chemical control system in summer-fall cultivation of bell pepper. Additionally, the possibility of genetic diagnosis as a sensitivity monitoring method for QoIs and SDHIs was investigated.

1. はじめに

茨城県のピーマン栽培は、2018 年産で作付面積 526ha、生産量 33,400t ともに全国1位であり、 全国生産量の約 24%を占める。産地は、県南東部に位置する鹿行地域に集中し、神栖市と鹿嶋市 がその中心となっている。作型は、主に半促成(加温または無加温)(収穫:2月~7月)、抑制 (8月~12月)そして促成(10月~6月)に分けられ、施設での栽培が中心となっている。

本県ピーマン栽培では、害虫を対象とした天敵の導入が進んでいる。中でも先進的な部会では、 20年ほど前から天敵を導入し殺虫剤の大幅な削減を実現している(鹿島、2010)。一方で、使用 する農薬については、天敵への影響が懸念されるものは、殺虫剤に限らず、殺菌剤でも利用が制 限されている。このような状況の中で、うどんこ病が多発生し問題となっている。

ピーマンうどんこ病は Leveillula taurica によって引き起こされ、年間を通じて発生するが、 特に春と秋での発生が多い。本病の防除は主に化学農薬に頼っているが、本病原菌はうどんこ病 菌の中では数少ない内部寄生性の生態を持っており、他のうどんこ病以上に感染後の防除では効 果が大きく劣る(宮本ら、2020)。そのため、わずかな散布時期の遅れや効果の低い薬剤の使用 はその後の発生に致命的な影響を及ぼす。

そこで、演者らは、本病について有効薬剤の探索とそれを用いた天敵使用時における防除体系の検討を行うとともに、本体系において重要な系統となった QoI 剤と SDHI 剤についてターゲット遺伝子の塩基配列の解明による感受性の評価を行ったので、その成果の一部を発表する。本研究では天敵に関する殺菌剤の影響を述べているが、対象は主にスワルスキーカブリダニである。

なお、本研究は、特別電源所在県科学技術振興事業補助金(文部科学省)により実施して得ら れた成果である。

1. 各種薬剤の防除効果の検討

薬剤の評価はポット苗を用いた接種試験と自然発病条件下における圃場試験(データ省略)により行った。

接種試験には、表1の薬剤を供試した。病原菌は、現地3農家より2017~2019年に採集した 罹病葉上の分生子を用いた。罹病葉から筆を用いて0.01%Tween-20を含む滅菌水に分生子を懸濁 し、約3×10⁴個/mlに調製した懸濁液を用いた。ピーマンとしては品種「京鈴」を用い、第一分岐 の葉が展開した苗を供試した。試験では、菌を接種する前に薬剤散布を行う予防効果と、接種後 に行う治療効果を検討した。本病は予防的な防除が重要ではあるが、現地では潜伏期間の長さか ら薬剤散布が遅れることや天敵保護の都合で散布間隔が空くことも想定され、治療効果も必要に なると考えたため両面の効果を評価した。

予防効果の試験では、散布した薬剤が完全に乾いた後にハンドスプレーを用いて胞子懸濁液を 葉裏に噴霧接種した。治療効果の試験については、菌を接種した 3~5 日後に薬剤散布を行った。 その後の発病状況を調査し、対照として設けた水処理区との比較で防除価を算出した。試験は、 各農家 1~3 回異なる時期に菌の採取を行い、その防除価の平均値を表1に示した。なお、一定の 効果が見られた剤は圃場試験でも効果の評価を行った(データ省略)。

44-34- 34 -3-1)	FRAC	希釈倍数	試験	数 ²⁾	平均防	除価	総合
供訊楽創	コード	(倍)	予防	治療	予防	治療	· 評価 ³⁾
ベノミル	1	2,000	4	4	98.7	94.6	A
キノキサリン系	M10	2,000	8	7	99.8	88.9	Α*
ヒ゜ラクロストロヒ゛ン・ホ゛スカリト゛	11 (QoI) •7 (SDHI)	2,000	8	7	89.7	80.7	В
ピラジフルミド	7 (SDHI)	2,000	3	3	97.4	78.8	В
シフルフェナミト゛・トリフルミソ゛ール	U6•3 (DMI)	2,000	8	7	95.2	78.8	C
ミクロブタニル	3 (DMI)	4,000	8	7	86.0	67.4	D
フェナリモル	3 (DMI)	10,000	3	3	89.2	66.9	D*
トルフェンピラド乳剤	39	1,000	8	7	69.4	60.1	D
ジフェノコナゾール	3 (DMI)	2,000	8	7	74.1	48.8	E
トリフルミゾール	3 (DMI)	3,000	8	7	86.5	43.9	E
ペンチオピラド	7 (SDHI)	2,000	8	7	60.1	31.6	
ピリオフェノン	U8	3,000	7	7	50.4	28.1	
メパニピリム	9	2,000	8	7	50.8	27.2	
トリホリン乳剤	3 (DMI)	1,000	3	3	26.6	25.0	
TPN	M5	1,000	5	4	24.7	19.2	
クレソキシムメチル	11 (QoI)	3,000	8	7	43.3	15.9	
DBEDC乳剤	M1	500	1	1	0.0	5.8	
水和硫黄剤4)	M2	500	4	3	97.5	0.7	
炭酸水素ナトリウム・銅	NC • M1	750	6	5	41.5	0.0	
カスガマイシン・銅	24 • M1	1,000	6	5	0.0	0.0	
ポリオキシン乳剤	19	500	1	1	0.0	0.0	

表1 ピーマンうどんこ病に対する各種薬剤の予防および治療効果(ポット苗での接種試験)

1) 水和剤は剤型の記載を省略した。

2) 予防試験では農薬散布5~6時間後に神栖市3圃場から採取した菌を噴霧接種した。治療試験では、菌接種3~5日後に 薬剤散布を行った。供試苗は各区5~6株。発病調査は、菌接種19日~27日後に、指数別(0:発病無し、1:病斑面積 が5%以下、2:6~25%、3:26~50%、4:51~75%、5:76%以上)に行い、以下の式より発病度及び防除価を算出した。 発病度={Σ(発病指数別葉数×発病指数)/(全葉数×5)}×100

防除価=100-(薬剤処理区の発病度/無処理区の発病度) ×100

3)総合評価は表1と表2の両方の結果を加味して行った。ただし、アスタリスクを付した薬剤は表1のみで評価した。 評価はAが最も効果が高く、次いでB、以下C、D、Eとし、それ以下は空欄とした。

4) 本試験に用いたのは商品名:イオウフロアブルであった。

表中の総合評価については圃場試験の結果も総合して判定したものである。A 評価の剤はベノ ミル水和剤とキノキサリン系水和剤であり、これらは予防効果はもちろん治療効果も非常に高 かった。しかし、いずれも天敵への影響が認められている剤である。続いて、B としたのがピラ クロストロビン・ボスカリド水和剤(以下 PB 剤)、ピラジフルミド水和剤である。いずれも高い 予防効果と治療効果を認めた剤である。C としたのはシフルフェナミド・トリフルミゾール水和 剤(以下 CT 剤)であり、本剤は表1の接種試験ではB 評価の剤と効果は同様であるが圃場試験で やや劣る効果であった。続いて、D と E であるが、そのうち4 剤が DMI 剤であり、1 剤は天敵への 影響が大きいトルフェンピラド乳剤である。DMI 剤については、本系統剤を含み予防・治療効果 が高い CT 剤の使用を推奨しているため、耐性菌のリスクも考慮すると剤を絞ることが必要と考え、 斑点病にも登録を有するミクロブタニル水和剤の使用を現場では指導している。

以上が本病の有効薬剤と考えられたが、天敵を使用する栽培においては、QoI 剤、SDHI 剤、DMI 剤とシフルフェナミドに系統が限られ、耐性菌リスクが懸念される。そこで、続いて、抑制栽培 におけるうどんこ病を対象になるべく農薬の散布回数を少なく、かつ少なくとも系統をローテー ションできる散布体系を検討した。

2. 防除体系の検討

2016~2018年にかけて現地圃場でうどんこ病の発生消長を調査した結果、抑制栽培(7月中下 旬定植)における本病の発生は、盛夏期では少なく推移するが、8月下旬~9月頃になると徐々に 増加し、9月下旬~10月以降、急速に広がる傾向が見られた(データ省略)。薬剤の使用につい て、農家ごとに散布間隔や種類は様々であったが、発生前から3~4週間程度の間隔で定期的に散 布する圃場では多発生することはなかった(データ省略)。防除体系では本病の発生消長や薬剤 の特徴、現場での使用事例を考慮するとともに、耐性菌発生を避けるために有効薬剤の系統が ローテーションとなるよう、さらに各薬剤の使用回数を最小限にとどめるように努めた。

表 2 が現在、現場に提案している防除体系である。最初の散布は、天敵放飼直前(8 月上旬 頃)となる。天敵放飼は定植した 1、2 週後に行うが、その後数週間は薬剤散布を避けることがあ る。まだ発病は少ない時期だが、本病の長い潜伏期間を考えて予防的に散布を開始し、その後は 概ね 3 週間間隔で薬剤を用いることとした。各剤の実用的な残効は 3 週間未満と考えているが、 各剤での比較的高い治療効果を期待した。実際に、各剤を約 3 週間間隔で散布しても高い効果を 示すことを所内試験で確認している(データ省略)。

散布時期	農薬名 1)	効果の 評価 ²⁾	FRAC コード	考え方
天敵放飼直前 (8月上旬前後)	ピラジフルミド水和剤	В	7	潜伏期間が長い時期であり、効果の高い予 防剤を早めに散布
9月上旬	シフルフェナミト゛・トリフルミソ゛ール水和剤	С	U6+3	長い残効と予防効果の高い剤を選択
9月下旬	ピラクロストロビン・ボスカリド水和剤	В	11+7	すでに発生がある場合を想定し予防ととも に治療効果の高い剤を選択
10月中旬	ミクロブタニル水和剤	D	3	作の終盤に向かう時期の防除のため、上の 剤よりはやや劣るが効果のある剤を選択

表2 天敵利用ピーマン抑制栽培におけるうどんこ病の防除体系

1) カッコ内は各農薬の略称。

2) 効果の評価については表1参照。

 図 1 神栖市の同一現地圃場における本成果の防除体系実施年(2018、2019 年)と農家慣行防除実施年(2016、2017 年)におけるうどんこ病の発生推移と農薬散布履歴 薬剤散布は下図で散布月日は上図の横軸に対応する。PB はピラクロストロビン・ボスカリド、Sd は硫黄粉剤、 Pen はペンチオピラド、Myc はミクロブタ=ル、CT はシフルフェナミド・トリフルミゾール、Pyr はピラジフルミドを示す。

この体系の有効性を神栖市の現地抑制栽培で実証した。栽培を行うハウスでは毎年うどんこ病 が多発生しており、作の中盤から落葉が目立つなどの被害が発生していた。図1は本病体系を実 施した 2018年と 2019年、農家慣行での防除の 2016年と 2017年の本病の発病度の推移を示す。 防除体系を実施した2か年では、本病を大きく抑制することができた。これにより、発生前から 予防的に、かつ有効薬剤を定期的に散布することで、本病を効果的に防除できることが実証され た。2020年より、本体系を本病防除に苦慮する圃場での現場指導に活用している。

ただ、薬剤の使用を見るとローテーションしているとは言え、薬剤が充実している作物などに 比べれば耐性菌対策としては不十分である。また、ピーマンでは抑制栽培以外の作型も行われて おり、そこでの使用も含めるとさらに耐性菌リスクは高くなる。そのため、薬剤感受性も合わせ てモニタリングしていくことが極めて重要となる。

3. 薬剤感受性の検討

防除体系においては B 評価とした PB 剤およびピラジフルミド水和剤が重要であるが、前者は QoI 剤と SDHI 剤、後者は SDHI 剤であり、耐性菌発生が懸念される。そこで、薬剤感受性の現 状、並びに今後のモニタリングのために検定法の開発を試みた。当初は病原菌の単胞子分離や、 単病斑からの菌の増殖、そしてその継代培養、またはキュウリ等で実施されているようなリーフ ディスク検定等を試みたが、いずれも作業が極めて煩雑、または使用できる施設の制限もあり、 方法を十分に確立できなかった。最終的には圃場の *L. taurica* の集団に対する感受性を、ハウス から大量に集めた罹病葉から作成した胞子懸濁液を接種することでの防除効果として評価する表 1の結果で検討した。しかし、QoI 剤については、PB 剤の効果が高い一方で、クレソキシムメチ ル水和剤の効果は低く、SDHI 剤は PB 剤とピラジフルミド水和剤とは異なり、ペンチオピラド 水和剤の効果は高いとは言い難い。これら成分に対する耐性は各系統内で交差することが知られ ているため、接種試験の結果のみで感受性の説明はできなかった。

一方で、QoI 剤や SDHI 剤などでは標的遺伝子の変異を調査することで、感受性を検討する手

法が他の病原菌では行われている。そこで、*L. taurica*の QoI 剤については cytochrome b 遺伝子 (*cytb*)、SDHI 剤についてはコハク酸脱水素酵素遺伝子のサブユニット B、C、D 遺伝子 (*sdhB、C、D*)について解析を行い、その感受性を検討した。単胞子を用いた PCR 法も *L. taurica*では報告されている(Mosquera et al. 2019)が、演者が実施した際には増幅効率が悪かっ たので感受性の評価には実用的ではないと判断し、鋳型 DNA は単病斑を由来する形で行った。

3.1 cytb 遺伝子解析による QoI 剤の感受性評価

研究を始めた時点では *L. taurica* の *cytb* 配列について公開された情報が無かったため、RACE 法で全 cDNA 配列を得ることを最初に行った。その後、ORF を解析し、5'側と 3'側の UTR の配 列を用いて DNA 配列を解析した。続いて、推定アミノ酸配列の 129、137、143 番目のアミノ酸 を挟むように、他のデータベース上の近縁な生物との配列とも比較しながら部分配列 406bp を増 幅する特異的プライマー(Ltcyt·F2、Ltcyt·R5)を設計した。このプライマーセットを用いて QoI 剤の使用歴がある現地 5 農家からの 15 病斑について PCR を行い、その産物についてダイレ クトで塩基配列を解析した。この現地農家のうち、3 農家は表 1 の試験の際に罹病葉を採集した 箇所であり、その病原菌に対する QoI 剤の効果は表 1 の通りである。残る 2 農家の病原菌につい ては QoI 剤の効果は不明である。塩基配列の解析の結果、いずれの病斑についても 143 番目のア ミノ酸が他の生物で QoI 剤耐性とされるアラニンであった。

上述のプライマーセットで他のサンプルについてもさらに検定を進めた。方法は Ishii et al. (2007)の G143A (GGT→GCT)を検出できる *Fnu*4HI による PCR-RFLP を用いた。なお、 今回の増幅領域には G143A にかかる *Fnu*4HI 認識配列とは別にもう一か所認識配列を含んでお り、ここではそれを制限酵素処理のポジコンとした。つまり、増幅された 406bp は感受性型 (G143)であれば 348bp と 58bp の断片に、耐性型 (A143)であれば 204bp、144bp、58bp に 切断される設計とした (図 2)。

図2 PCR-RFLPの概略と電気泳動パターン

主産地である神栖市4農家と、水戸市1農家から2016年~2018年に採集した計168病斑について PCR-RFLP を実施した結果、168病斑全てで耐性型の cytb が検出された。我々の研究では、 QoI 剤未使用の圃場は見出せず、さらに調査圃場からも感受性型のみの cytb の病斑は得られな かった。そこで、感受性型の配列を得るために、348bpの断片を認めた一部 PCR 産物について、 ゲル抽出を行いクローニング後に塩基配列を決定した。その結果、クローンの一部に感受性型

(G143)の cytb 断片を確認した。したがって、ピーマンにおいても他の生物と同様にグリシン が QoI 剤感受性型 (野生型) であり、アラニンが耐性型であることが示唆された。この野生型の 配列の由来が、病斑中に含まれる感受性菌のものであるか、それとも同一菌株内におけるヘテロ プラスミー (Ishii et al. 2007; Mosquera et al. 2019) なのかは不明であるが、耐性型の検出頻度か ら、ピーマンうどんこ病菌ではすでに耐性菌が優占していることが示唆された。そのため、QoI 剤単剤による防除効果は期待できないと考えられた。したがって、クレソキシムメチル水和剤の 防除効果の低さは QoI 剤耐性菌の蔓延によるものと考えられた。同様にピラクロストロビンも効 果を失っており、PB 剤の効果はボスカリドが主に発揮していると考えていたが、その考えとは結 果が異なることを3.2で述べる。

なお、水戸市の農家圃場からは 12 病斑を検定し、いずれも耐性型と判定された。当該圃場は 2017 年新築のビニルハウスでピーマンを初めて栽培し、病斑採集はその初作時に行った。薬剤の 使用歴はクレソキシムメチル水和剤 2 回のみであった。水戸市ではピーマンを栽培する農家はあ るものの総栽培面積は 1ha 程度と少なく、当該圃場周囲にも商業的な栽培は少なくとも数キロ範 囲では見られない。本県主産地である神栖市や鹿嶋市からも数十キロ離れており、菌が移動した 可能性は低いと思われる。そのため、QoI 剤耐性型の選抜はわずかな期間に生じた理由は不明で あるが、本県内では新設のハウスでも継続的に QoI 剤単独で本病に対して効果を得ることは難し いと考えられる。

3. 2 QoI 剤耐性型が優占する菌群における PB 剤の防除効果

PB 剤の効果を検討するため、ピラクロストロビン乳剤(BASF 社より提供)およびボスカリド 水和剤の各単剤を PB 剤 2,000 倍希釈時の予防効果を比較した。その結果、ボスカリド水和剤の防 除効果は低かったものの、ピラクロストロビン乳剤は PB 剤と同様に効果を示した(図 3)。 G143A を持つ病原菌は QoI 剤には一様に比較的高度な耐性を示すが、ピーマンうどんこ病菌での ピラクロストロビンにおいては状況が異なることが示唆された。可能性として、ピラクロストロ ビンの L. taurica に対する基礎活性がクレソキシムメチルより極めて高いために感受性低下をマス

クし、防除効果を発揮していること が考えられるが、残念ながらその詳 細については不明である。なお、 キュウリうどんこ病菌 Podosphaera xanthii についても同様に QoI 耐性・ SDHI 剤感受性菌に対して同様の試 験を実施したが、ピラクロストロビ ン乳剤の効果は見られなかった (データ省略)。いずれにしても、 ピラクロストロビンの感受性検定は 上述の PCR-RFLP では評価できない ことが判明した。

3. 3 SDHI 剤

SdhB、C、D 遺伝子については、*cytb* 同様に RACE 法により解析を行い、UTR に設計したプ ライマーによりエキソンとイントロンを解析するなどで、DNA 配列を明らかにした。

SDHI 剤はペンチオピラド水和剤を中心に 10 年近く使用されており、主産地である鹿行地域で 本系統剤を未使用である農家は得られなかった。一方、QoI 剤の項でも登場した水戸市の 1 農家 からの *L. taurica* は SDHI 剤の暴露を受けていないと考えられた。そこで、以下の解析では、本 圃場の病斑を SDHI 剤感受性として扱った。

農家名	採集年	サンフ ル名	SdhB	SdhC	SdhD	農家名	採集 年	サンフ ル名	SdhB	SdhC	SdhD
水戸 A	2017	PL387	-	-	-	神栖 E	2019	PL799	Wild	Wild	Wild
		PL390	Wild ^a	Wild	Wild			PL800	Wild	Wild	Wild
		PL392	Wild	Wild	Wild			PL802	Wild	Wild	Wild
								PL805	Wild	Wild	Wild
神栖 A	2018	PL659	Wild	Wild	Wild		2020	PL871	NA	Wild	Wild*
		PL660	Wild	Wild	Wild			PL872	Wild	Wild	Wild
		PL661	Wild	Wild	Wild			PL873	Wild	Wild*	Wild
								PL874	Wild	NA	Wild
神栖 B	2017	PL474	Wild	Wild	Wild			PL875	Wild	Wild	Wild*
		PL517	Wild	Wild	Wild			PL877	Wild	Wild	Wild
神栖 C	2017	PL479	Wild	Wild	Wild	神栖 F	2018	PL635	Wild	Wild	Wild
		PL528	Wild	Wild	Wild			PL640	Wild	Wild	Wild
	2018	PL610	Wild	Wild	Wild			PL641	Wild	Wild	Wild
		PL611	Wild	Wild	Wild			PL643	Wild	Wild	Wild
		PL612	Wild	Wild	Wild						
		PL646	Wild	Wild	Wild	神栖 G	2019	PL791	Wild	Wild	Wild
		PL652	Wild	Wild	Wild*						
						笠間	2017	PL543	Wild	NA	NA
神栖 D	2017	PL492	Wild	Wild	Wild	(茨城園研)		PL544	Wild	NA	NA
		PL542	Wild	Wild	Wild		2018	PL716	Wild	Wild	Wild
	2019	PL792	Wild	Wild	Wild			PL718	NA	Wild	Wild
		PL794	Wild	Wild	Wild		2019	PL835	Wild	Wild	Wild
		PL797	Wild	Wild	Wild			PL836	Wild	Wild	Wild
		PL798	Wild	Wild	Wild			PL867	Wild	Wild	Wild
		PL817	Wild	Wild	Wild*			PL868	Wild	Wild	Wild

表3 Leveillula tauricaの SdhB、C、Dの推定アミノ酸配列の比較【一部結果の抜粋】

^a Wild は PL387 と比較してアミノ酸配列が同一であることを示す。

^b NA: no analysis.

*サイレント変異を認めたことを示す。

神栖市からの病斑の採集は 2016~2020 年に 7 農家で行い、SDH 遺伝子は計 82 病斑について 解析した。併せて、薬剤の試験等で 2016 年から頻繁に SDHI 剤を使用していた笠間市の園芸研 究所内ビニルハウス (茨城園研) からも病斑の採集を行った。解析結果の一部について表 3 に示 す。水戸市で採集した病斑の推定アミノ酸配列を野生型とした場合、神栖市及び茨城園研の病斑 ではいずれもアミノ酸置換を伴う変異は認めなかった。したがって、本県のピーマンうどんこ病 菌においては SDH 遺伝子の変異によって生ずる感受性低下はまだ発達していないことが示唆さ れた。ただし、SDHI 剤については標的遺伝子とは異なる箇所での変異が感受性低下に関与する ことを示唆する報告もされている (Avenot et al. 2014; Miyamoto et al. 2010; Yamashita and Fraaije 2018; Sang et al. 2020; Steinhauer et al. 2019) 。しかし、このような事例を生じた場合 でも、SDH 遺伝子での変異は同時に検出されている。そして、現状では SDH 遺伝子での変異で、 その感受性低下を説明できる事例も多数報告されている (Avenot et al. 2014; Miyamoto et al. 2010; Popko et al. 2018) 。うどんこ病菌では演者ら明らかにした *P. xanthii* (Miyamoto et al. 2020) やヨーロッパでの *Erysiphe necator* (Graf 2017) がその例である。以上のことから、現 状では茨城県においてピーマンうどんこ病菌の SDHI 剤に対する耐性菌発達は確認できなかった。 そのため、SDHI 剤は本病に対して本来の十分効果を発揮していると考えられ、表 1 と図 3 で示 したボスカリド水和剤、ペンチオピラド水和剤、ピラジフルミド水和剤の効果の差異は本病に対 する基礎活性に由来すると考えられる。これら 3 剤に対するキュウリうどんこ病菌 *P. xanthii* の EC₅₀ をリーフディスク法で評価した演者らの研究では、ピラジフルミドはペンチオピラドに比べ て 50 倍近く低い値となっていた(Miyamoto et al. 2020)。同じくうどんこ病菌である *L. taurica* でも同様の可能性が考えらえた。

4. 耐性菌モニタリングと対策

今回の防除体系に用いた薬剤では、SDHI 剤については各遺伝子のプライマーを用いた塩基配 列の解析によって、感受性のモニタリングは可能であると考えている。この他、本要旨には述べ なかったが、DMI 剤について cyp51、ベンズイミダゾール系剤についてはβtubline 遺伝子の解 析を終えており、既報の他生物の感受性低下菌で見られた変異とを照らし合わせることで感受性 を推定していきたいと考えている。ただし、ピラクロストロビンは PCR-RFLP だけでは判断でき な上に、ターゲット遺伝子以外での変異の可能性も考慮する必要があり、状況に応じて現地から 罹病葉を採集し、接種試験を行って効果を確認してくことも重要と考えている。

今回の防除体系は天敵利用を想定したものであるが、天敵影響を配慮してうどんこ病に対する 有効薬剤が一部系統に限られてしまい、十分な耐性菌対策ができているとは考えづらい。本県で は同様の問題をキュウリでも普及センターから相談されたことがある。キュウリうどんこ病は外 部寄生性なので防除は比較的容易であり登録薬剤は多いが、ピーマンよりも耐性菌問題が深刻で あり、カブリダニを使用した場合はやはり剤が足りなくなるなどの問題が生ずる。共通している のは、天敵での防除対象が微小害虫であり、果実など商品性のある箇所への被害ばかりでなく、 媒介するウイルスが問題となる場合が多く、さらに抵抗性発達が顕著な害虫が使用目的となるた め、農家経営としては天敵利用が優先される傾向にある。そのため、今後の天敵利用の普及は殺 菌剤の選択肢を狭め、うどんこ病菌に限らず、耐性菌リスクが高くなる防除方法を選択せざるを 得ないケースも出てくると思われる。

他県のピーマン栽培においては、硫黄粉剤の燻煙処理を有効に活用し、天敵利用時にはうどん こ病の発生を十分に抑制している事例がある。本県では、硫黄は天敵への影響や資材劣化を意識 して使用を避ける農家も多い。しかし、近年では普及センターなどが中心にその使用方法に関し て現地で試験を行っており、この普及は殺菌剤の使用をさらに削減できる可能性がある。今後の 利用が広がることが期待される。

なお、今回の防除体系ではピーマンの重要病害の一つである斑点病の効果は考慮していない。 しかし、近年、本県では斑点病の発生が増加しつつあり、その防除対策も検討する必要がある。 今後は斑点病についても天敵への影響を考慮した薬剤選抜を進め、それをうどんこ病の防除体系 に組み入れて両病害を安定して防除できるピーマン栽培に寄与したい。

引用文献

Avenot HF, van den Biggelaar H, Morgan DP, Moral J, Joosten M, Michailides TJ (2014) Sensitivities of baseline isolates and boscalid-resistant mutants of *Alternaria alternata* from pistachio to fluopyram, penthiopyrad, and fluxapyroxad. Plant Dis 98:197–205.

- Graf S (2017) Characterisation of metrafenone and succinate dehydrogenase inhibitor resistant isolates of grapevine powdery mildew *Erysiphe necator*. PhD Dissertation, Technische Universität Kaiserslautern, Kaiserslautern, German.
- Ishii H, Yano K, Date H, Furuta A, Sagehashi Y, Yamaguchi T, et al. (2007) Molecular characterization and diagnosis of QoI resistance in cucumber and eggplant fungal pathogens. Phytopathology 97:1458–1466.
- 鹿島哲郎 (2010) 茨城県の半促成栽培ピーマンにおけるスワルスキーカブリダニの利用. 植物防 疫 64:37-41.
- Miyamoto T, Ishii H, Stammler G, Koch A, Ogawara T, et al. (2010) Distribution and molecular characterization of *Corynespora cassiicola* isolates resistant to boscalid. Plant Pathol. 59:873-881.
- 宮本拓也、林可奈子、小河原孝司(2020) ピーマンおよびキュウリうどんこ病に対する 6 種薬剤の防除効果の差異. 茨城病虫研報 59:39-45.
- Miyamoto T, Hayashi K, Okada R, Wari D, Ogawara T (2020) Resistance to succinate dehydrogenase inhibitors in field isolates of *Podosphaera xanthii* on cucumber: Monitoring, cross-resistance patterns and molecular characterization. Pestic. Biochem. Physiol. 169:104646.
- Mosquera S, Chen L-H, Aegerter B, Miyao E, Salvucci A, et al. (2019) Cloning of the Cytochrome b Gene From the Tomato Powdery Mildew Fungus Leveillula taurica Reveals High Levels of Allelic Variation and Heteroplasmy for the G143A Mutation. Front Microbiol. 10:663.
- Popko Jr JT, Sang H, Lee J, Yamada T, Hoshino Y, Jung G (2018) Resistance of *Sclerotinia homoeocarpa* field isolates to succinate dehydrogenase inhibitor fungicides. Plant Dis 102:2625–2631.
- Sang H, Lee HB (2020) Molecular mechanisms of succinate dehydrogenase inhibitor resistance in phytopathogenic fungi. Res. Plant Dis. 26:1-7.
- Steinhauer D, Salat M, Frey R, Mosbach A, Luksch T, Balmer D, et al. (2019) A dispensable paralog of succinate dehydrogenase subunit C mediates standing resistance towards a subclass of SDHI fungicides in Zymoseptoria tritici. PLoS Pathog. 15:e1007780.
- Yamashita M, Fraaije B (2017) Non-target site SDHI resistance is present as standing genetic variation in field populations of *Zymoseptoria tritici*. Pest Manag Sci (74):672–681.

新規 QoI 殺菌剤メチルテトラプロールの発見 - 交差耐性回避を目指した創農薬

Discovery of a new QoI fungicide metyltetraprole - Pesticide design to avoid cross resistance

> 住友化学株式会社 松崎 雄一

Yuichi Matsuzaki, Health and Crop Sciences Research Laboratory, Sumitomo Chemical, Co.Ltd. 4-2-1, Takatsukasa, Takarazuka, Hyogo-pref. 665-8555, Japan

Abstract

QoIs (Quinone outside inhibitors) have been widely used for various crops worldwide. However, their extensive use has resulted in the development of resistance by many fungal pathogen species. Highly resistant strains toward QoIs have a mutation in *cytochrome b* gene that results in a G143A amino acid substitution in the protein. We attempted to design a new QoI that would be effective against these resistant strains. We first found a tetrazolinone compound in our sample collection that was able to exhibit almost the same levels of efficacy against both G143A mutant and wild type strains. Further efforts to enhance its potency led us to find metyltetraprole. Metyltetraprole is a new tool for farmers that will enable them to control difficult-to-treat, fungicide-resistant crop pathogens.

1. はじめに

人口増加および経済成長により世界の農薬市場は 2010 年代においても拡大し続けており、殺菌剤に ついても同様である。一方、系統別に見ると全体の6割以上をDMI剤(FRAC Code: 3)、QoI剤(FRAC Code: 11)、SDHI剤(FRAC Code: 7)の3系統が占めており、大型の新規系統の発見は少ない(図1)。 前記3系統はスペクトラムが広く適用作物・病害は多岐に渡るが特に欧州におけるコムギ用殺菌剤、お よび南米におけるダイズ用殺菌剤での売上が大きい。多くの農薬会社はDMI剤、QoI剤、およびSDHI 剤に続く汎用系統の発見を目指して探索研究を行っていると思われるが、安全性基準の厳格化等により、 その難易度は高まっている。

図1.世界全体の殺菌剤売上高と DMI 剤、QoI 剤、および SDHI 剤の占める割合 (2016 年、Phillips McDougall 社調査)

2. DMI 剤、SDHI 剤および QoI 剤の耐性菌問題

使用頻度が多いことは当該剤に対する耐性菌の選択圧が高いことを意味する。実際にこれら3系統に 対する耐性菌は種々の作物・病害で発生蔓延しており、多くの国で問題となっている。例として欧州に おいて経済的被害の大きいコムギ葉枯病菌(*Zymoseptoria tritici*)の例を表1に示した。いずれの系統 も耐性の主要なメカニズムは各々の標的タンパク質をコードする遺伝子中の点突然変異であるが、DMI 剤および SDHI 剤では原因となる遺伝子変異の種類が多く、効力低下の程度は変異および系統内の化合 物間で様々である。一方、QoI 剤では変異の種類はほぼ G143A型と F129L型に限られており、このう ち G143A型については全ての QoI の効力が劇的に低下する(Sierotzki *et al.*, 2015)。

	DMI	QoI	SDHI
標的遺伝子 (タンパク質)	CYP51	Cytochrome b	Succinate dehydrogenase Subunit B, C, D
変異 (アミノ酸置換)	L50S, D134G, V136A, Y137F, S188N, A379G, I381V/D, Y461H/S, N513K, S524T Promoter (Overexpression) 他菌種では上記以外の変異も 多数	G143A F129L(ごく稀)	B-N225T, B-T268I, C-T79N, C-W80S, C-N86S, C-H152R, C-V166M 他菌種では上記以外の変異も 多数

表1.DMI 剤、QoI 剤、および SDHI 剤に対する耐性菌の変異パターン(コムギ葉枯病菌)

※Sierotzki 2015、Cools et al., 2013、および Rehus et al., 2018 を基に作成

3. 点突然変異による耐性のメカニズムと交差耐性

では、なぜ標的タンパク質をコードする遺伝子中の点突然変異が耐性の原因となるのだろうか。特異 的阻害剤とその標的タンパク質との関係は鍵と鍵穴の関係に例えられる。すなわち、阻害剤(鍵)はそ の立体、疎水性、電荷等の特性により、それに結合しうるタンパク質の特定の部位(鍵穴)を塞ぎタン パク質本来の機能を阻害する。この事実から推測されるとおり、耐性問題の原因となる遺伝子変異は多 くの場合、標的タンパク質の薬剤結合部位のアミノ酸をコードしている。すなわち、当該アミノ酸の置 換による薬剤結合部位の立体、疎水性、および電荷等の変化が薬剤の親和性低下および耐性化の原因で ある。例として、表1に記載した QoI 剤および SDHI 剤の耐性の原因となるアミノ酸置換部位を図2お よび図3に各々示した。一見して判る通り、耐性の原因となるアミノ酸置換部位はタンパク質中の一次 構造上の位置が離れていても立体構造上の部位は近く、いずれも薬剤の結合部位付近に存在することが 判る。一方、同系統内の殺菌剤でもファーマコフォア(標的タンパク質との相互作用において中心的役 割を果たす部分構造)以外の化学構造は各々異なっている。よって、変異の種類によっては部分構造の 異なる同系統剤に対し交差耐性の程度が異なる場合が見られる。実際に DMI 剤と SDHI 剤ではこのよ うな報告が多数なされている(Ishii et al., 2011; Cools et al., 2013)。

他方、問題となる変異型の種類が多い場合は、全ての変異型の耐性菌に逼く交差耐性を回避できるような化合物を見出すことが困難と予想される。この点において QoI 剤では前述のように耐性の原因となる変異型が概ね2種類に限られることから、交差耐性を回避するような化合物をデザインするうえで都合が良いと考えられる。

図2. QoI 剤の結合部位における Cytochrome bの変異部位 (中央グレーの空間充填モデルは QoI 分子、周囲の黒の空間充填モデルは表1の2つの変異部位を示す)

図 3. SDHI 剤の結合部位における Succinate dehydrogenase subunit B および C の変異部位 (中央グレーの空間充填モデルは SDHI 分子、周囲の黒の空間充填モデルは Subunit B、C の 7 つの変異部位を示す)

4. QoI 耐性の原因となる2種の点突然変異

QoI 剤への耐性の原因となる 2 つの変異型のうち、G143A 変異型はピリベンカルブを除く全ての QoI 剤に対し 100 倍以上、ピリベンカルブに対しても 15 倍以上の感受性低下を示し、殆どの場合において 実用上の重篤な問題に繋がる。一方、F129L 型は概して G143A 型ほど重篤な感受性低下には繋がらず、 QoI 剤の中でも一部の剤の効果はある程度維持される(Kataoka *et al.*, 2010; Sierotzki *et al.*, 2015)。 G143A 型が高度耐性を起こす原因として、QoI 剤の中央ベンゼン環との立体的反発が共結晶の X 線構 造解析から示唆されている(図 4)。また、F129L 型については QoI の側鎖の付け根部分およびファー マコフォア(QoI 剤ではメトキシアクリレート構造またはそのアナログがファーマコフォアに該当する) が関連部位と見られるが、G143A 型と比較すると詳細は不明である(Fisher *et al.*, 2005)。

図4.G143A型耐性菌におけるアゾキシストロビンとAla143の立体障害(推定)

5. G143A型 QoI 高度耐性菌への活性を指標としたファーマコフォアの探索

前述のように G143A 型耐性菌における活性低下は中央ベンゼン環との立体的反発による親和性低下 に由来する可能性が高い。よって、この中央ベンゼン環を除去することがまず思いつくが、この中央ベ ンゼン環は農薬として実用可能なレベルの化学的安定性を確保するために不可欠とされている(Sauter, 2011)。一方、中央ベンゼン環が連結しているファーマコフォアについては QoI 剤の場合、構造許容性 が比較的広いことが知られている。よって、ファーマコフォアを構造改変することで相互作用における 中央ベンゼン環の角度や位置を変化させ、立体的反発を回避できる可能性が考えられる。メチルテトラ プロールの発見に至る探索プロジェクトの開始時点ではどのようなファーマコフォアならば立体的反 発を回避しうるのか詳細までは予測できなかったが、住友化学の研究所内で保有していたサンプルのう ち、QoI 剤のファーマコフォアとして機能しうる部分構造を持つ化合物を約 200 点選抜してコムギ葉枯 病菌 (*Zymoseptoria tritici*) の G143A 型耐性菌への活性を調べた (Matsuzaki *et al.*, 2020a)。その結 果、ファーマコフォアとしてテトラゾリノン構造を持った化合物(1)は G143A 型耐性菌において交差耐 性を示さず、QoI 感受性菌と G143A 型耐性菌に対し同程度の活性を示すことが判った。ただし、その 基礎活性は市販 QoI 剤の 1/10 程度であった (図 5)。

図5. テトラゾリノン化合物(1)およびコムギ葉枯病菌に対する抗菌活性

6. メチルテトラプロールの発見

活性向上を目指して化合物のデザインを種々検討した結果、最初に発見されたテトラゾリノン型化合物よりも 100 倍程度基礎活性が向上したメチルテトラプロールに到達した(図6)。メチルテトラプロールもまた、QoI 感受性菌と G143A 型耐性菌に同程度の活性を示した。興味深いことにメチルテトラプロールは G143A 型耐性菌のみならずオオムギ網斑病菌の F129L 型耐性菌においても強力な活性を維持しており、当該変異による活性低下は軽微であった。また、コムギ葉枯病菌から抽出したミトコンドリア画分を用いてコハク酸および NADH を基質とした電子伝達系の阻害作用を調べたところ

(Suemoto *et al.*, 2019)、メチルテトラプロールは QoI 剤(複合体 III 阻害剤)であることが確認され、 菌体内の標的分子が変わったことで交差耐性を回避しているわけではないことが判った(図7)。

<u>アゾキシストロビン</u>

<u>コムギ葉枯病菌</u> EC₅₀(QoI-S) 0.02 ppm EC₅₀(G143A) >10 ppm

<u>オオムギ網斑病菌</u> EC₅₀(QoI-S) 0.005 ppm EC₅₀(F129L) 0.3 ppm

メチルテトラプロール

<u>コムギ葉枯病菌</u> EC₅₀(QoI-S) 0.002 ppm EC₅₀(G143A) 0.002 ppm

<u>オオムギ網斑病菌</u> EC₅₀(QoI-S) 0.004 ppm EC₅₀(F129L) 0.006 ppm

図6.メチルテトラプロールの構造およびコムギ葉枯病菌、オオムギ網斑病菌に対する抗菌活性

図7. 各化合物のコハク酸を基質とした電子伝達系阻害作用 (コムギ葉枯病菌、Suemoto *et al.*, 2019の表を基に作成)

7. 農業用殺菌剤としての基礎評価

メチルテトラプロールは子嚢菌(Ascomycota)を中心に広い抗菌スペクトラムを示した(表2)。なお、 既存 QoI 剤と同様に通常の富栄養培地では抗菌活性を検出しにくい菌種が多く、手法に検討が必要であ った。即ち一部の菌種ではサリチルヒドロキサム酸(SHAM)等のシアン耐性呼吸(Alternative oxidase、 AOX)阻害剤の添加、または貧栄養培地の使用により抗菌活性の検出感度が向上した。菌種によっては これら手法においても抗菌活性を検出し難かったが、寒天平板希釈法ではなく 96 穴タイタープレート を用いた抗菌試験(液体培養)とすることで活性の検出感度が著しく向上した。本手法は既存 QoI 剤に 対する感受性モニタリングにも応用可能と考えられた(Matsuzaki *et al.*, 2020b, 2020c)。

種々植物を用いたポット試験においては、進展速度が比較的緩やかな病害を中心にメチルテトラプロ ールは高い防除効果を示した。コムギ葉枯病等において作用特性を検討した結果、予防効果に加えて治 療効果も認められた。よって、本剤が浸達性を有することが示唆された。放射性標識したメチルテトラ プロールを用いた検討からは、散布されたメチルテトラプロールは一部がコムギ葉内部に取り込まれ、 取り込まれたメチルテトラプロールは導管流とともに葉先へ向かって緩やかに移行することが示唆さ れた。一方、潅注処理では防除効果が認められず、根部からの浸透移行性はほぼないものと考えられた。

Division	Class	Species		EC ₅₀ (ppm)
Ascomycota	Dothideomycetes	Zymoseptoria tritici	コムギ葉枯病菌	0.002
		Ramularia collo-cygni	オオムギラムラリア斑点病菌	0.002
		Pyrenophora teres	オオムギ網斑病菌	0.005
		Pyrenophora tritici-repentis	コムギ黄斑病菌	0.05
		Parastagonospora nodorum	コムギふ枯病菌	0.003
	Leotiomycetes	Botrytis cinerea	灰色かび病菌	0.03
	Sordariomycetes	Colletotrichum graminicola	シバ炭疽病菌	0.007
		Microdochium majus	コムギ赤かび病/紅色雪腐病菌	0.005
Basidiomycota	Agaricomycetes	Rhizoctonia solani AG2-2 IIIB	苗立枯病菌	>3
		Rhizoctonia solani AG4	苗立枯病菌	2
	Ustilaginomycetes	Ustilago maydis	トウモロコシ黒穂病菌	0.04
-	Oomycetes	Aphanomyces cochlioides	テンサイ黒根病菌	0.8
		Pythium irregulare	苗立枯病菌	>3
		Phytophthora capsici	灰色疫病菌	>3

表2. メチルテトラプロールの抗菌スペクトラム

(Suemoto et al., 2019の表を基に作成)

8. 海外における実用性評価

メチルテトラプロール乳剤を欧州のコムギ、オオムギで評価した結果、メチルテトラプロールは QoI 剤の耐性菌が蔓延した圃場においてコムギ葉枯病、黄斑病、オオムギ網斑病、ラムラリア斑点病などに 卓越した効果を示した(表3、4)。また、コムギ葉枯病においてメチルテトラプロールの使用は QoI 耐 性菌(G143A型)の比率を増加させないことが確認された(表5)。そのほか、QoI 耐性菌が蔓延して いるダイズ斑点病、ダイズ褐色輪紋病、テンサイ褐斑病、ワタ白かび病、リンゴ黒星病、ブドウうどん こ病などに高い効果を示した。また、QoI 耐性菌が未報告の病害についてもトウモロコシグレーリーフ スポット病、南方さび病などに既存 QoI 剤と同等以上の効果を示した。

表3.コムギ葉枯病(Zymoseptoria tritici)欧州圃場試験結果

学校生物	G143A耐性菌比率%	毎加理区珍定由	メチルテトラプロール	ピラクロストロビン
武破垣	(G143A分離株数/総分離株数)	黑処理凶光州及	120 g/ha 防除価	220 g/ha 防除価
France (1)	80 (4/5)	85.5	93.2	36.0
France (2)	100 (5/5)	86.4	96.2	14.8
Belgium	100 (5/5)	27.8	93.2	1.8
UK (1)	100 (5/5)	72.4	90.3	46.3
UK (2)	100 (5/5)	36.9	94.0	54.7
Ireland	100 (5/5)	44.2	97.9	52.7
平均	-	58.9	94.1	34.4

	表4	. オオユ	ムギ網斑病	(Pyrenophora	<i>teres</i>)	欧州圃場試験結果
--	----	-------	-------	--------------	----------------	----------

글수 표수 나나	F129L耐性菌比率%	無如理反驳定由	メチルテトラプロール	ピラクロストロビン
武鞅地	(F129L分離株数/総分離株数)	無処理凶先枘度	120 g/ha 防除価	220 g/ha 防除価
France (1)	N.D.	19.9	88.4	51.3
France (2)	12.5 (2/16)	22.5	88.9	84.4
France (3)	55.6 <i>(5/9)</i>	14.8	94.6	3.4
France (4)	16.7 (2/12)	18.6	94.1	97.3
平均	-	19.0	91.5	59.1

		2014 年	2015 年		
		メチルテトラプロール 120 g/ha 処理区	無処理区	メチルテトラプロール 120 g/ha 処理区	
総分離株数	99	99	110	107	
QoI 感受性株数	7	15	8	10	
QoI 耐性(G143A)株数	92	84	102	97	

表5.メチルテトラプロール処理による QoI 耐性菌の増減(コムギ葉枯病菌)

※2014年は20箇所、2015年は22箇所の圃場試験地から各々約5株ずつ分離した合計数 (Matsuzaki et al., 2020bの表を基に作成)

9. 感受性ベースライン検定

欧州におけるコムギ葉枯病菌の感受性ベースライン検定の結果、メチルテトラプロールに対する感受 性分布は一峰性の分布を示し、メチルテトラプロール耐性菌の存在は認められなかった(図8)。

図8.メチルテトラプロールおよびピラクロストロビンに対する感受性分布 コムギ葉枯病菌 (フランス、イギリス、ドイツ、ベルギー、アイルランド 2015年)

10. 日本国内における開発状況および今後の展望

日本国内においては QoI 剤耐性菌が問題となっているテンサイ褐斑病、リンゴ黒星病、チャ輪斑病等 を対象に開発検討中である。

本剤は既存の QoI 耐性菌に高い効果を示すものの、メチルテトラプロールに特異的に耐性を示す新た なタイプの QoI 耐性菌が出現するリスクは否定できない。弊社としては予防的散布、散布回数の制限、 他剤とのローテーションなどの遵守を呼びかけ、本剤に対する耐性菌が出現、蔓延しないよう対策を図 っていきたい。また、本剤のモニタリングにおいては対象病害によって培地上での抗菌活性検出に工夫 が必要な場合が多いことから、当該手法の確立、普及についても力を入れていく予定である。

11. おわりに

種々地域、作物において、かつての主要剤に耐性菌問題が発生し、耐性菌が未だ発達していない系統 や、耐性菌の心配が少ない非選択性殺菌剤(予防剤)への依存が高まっている。しかし、前者への依存 は当該系統への耐性菌発達リスクを高めることに繋がるであろうし、後者への依存は概して環境負荷が 高いことから、近年欧米では使用制限が強化される傾向にある。このような中、各農薬会社は既存剤と 異なる作用メカニズムの剤を見出すべく努力を行っていると思われるが、成功例は多くない。我々はメ チルテトラプロールの発見により、耐性菌問題により殆ど有効性を失った系統においても、化合物の構 造を巧妙にデザインしなおすことで耐性菌問題を克服できることを示した。特に海外においては医療の 分野でも真菌の殺菌剤耐性問題が問題視されており、メチルテトラプロールの発見が世界の殺菌剤研究 者にとって何らかのヒントとなることを願っている。

引用文献

- Cools HJ and Fraaije BA (2013) Update on mechanisms of azole resistance in *Mycosphaerella* graminicola and implications for future control. *Pest Management Science* 69: 150-155.
- Fisher N and Meunier B (2005) Re-examination of inhibitor resistance conferred by Qo-site mutations in cytochrome b using yeast as a model system. *Pest Management Science* 61: 973-978.
- Ishii H, Miyamoto T, Ushio S and Kakishima M (2011) Lack of cross-resistance to a novel succinate dehydrogenase inhibitor, fluopyram, in highly boscalid-resistant isolates of *Corynespora cassiicola* and *Podosphaera xanthii*. *Pest Management Science* 67: 474-482.
- Kataoka S, Takagaki M, Kaku K, and Shimizu T (2010) Mechanism of action and selectivity of a novel fungicide, pyribencarb. *J Pestic Sci* 35: 99-106.
- Matsuzaki Y, Yoshimoto Y, Arimori S, Kiguchi S and Iwahashi F (2020a) Discovery of metyltetraprole: Identification of tetrazolinone pharmacophore to overcome QoI resistance. *Bioorganic & Medicinal Chemistry* 28(1): 115211
- Matsuzaki Y, Kiguchi S, Suemoto H and Iwahashi F (2020b) Antifungal activity of metyltetraprole against the existing QoI-resistant isolates of various plant pathogenic fungi. *Pest Management Science* 76(5): 1743-1750.
- Matsuzaki Y, Uda Y, Kurahashi M and Iwahashi F (2020c) Microtiter plate test using liquid medium is an alternative method for monitoring metyltetraprole sensitivity in *Cercospora beticola*. *Pest Management Science* Epub ahead of print doi: 10.1002/ps.6133.

- Sauter H (2011) Strobilurins and Other Complex III Inhibitors, in Modern Crop Protection Compounds (2nd) Revised and Enlarged Edition, Wiley-VCH, Weinheim: pp. 584-627.
- Sierotzki H (2015) Respiration inhibitors: complex III, in Fungicide Resistance in Plant Pathogens, ed. By Ishii H and Hollomon DW, Springer, Tokyo, pp. 119-143.
- Suemoto H, Matsuzaki Y and Iwahashi F (2019) Metyltetraprole, a novel putative complex III inhibitor, targets known QoI resistant strains of *Zymoseptoria tritici* and *Pyrenophora teres. Pest Management Science* 75: 1181-1189.
- Rehfus A, Strobel D, Bryson R and Stammler G (2018) Mutations in sdh genes in field isolates of Zymoseptoria tritici and impact on the sensitivity to various succinate dehydrogenase inhibitors. Plant Pathology 67: 175-180.

2021.3.23 現在

[幹事長]

演辺 盉樹	岐阜県農業技術センター
仮辺 万咽	1211年11日にくり

[幹事] (50 音順)

石濱 典子	全国農業協同組合連合会
市川 由起	全国農業協同組合連合会
内田 聡	バイエルクロップサイエンス(株)
内橋 嘉一	兵庫県立農林水産技術総合センター
岡本 吉弘	三井化学アグロ(株)
金子 洋平	千葉県農林総合研究センター
川口 章	農研機構 西日本農業研究センター
黒木 信孝	日本農薬(株)
鈴木 啓史	三重県農林水産部
中島 嘉秀	シンジェンタジャパン(株)
藤井 直哉	秋田県農業試験場
宮本 拓也	茨城県農業総合センター 園芸研究所
明星 亘俊	クミアイ化学工業(株)

[運営委員] (県政順)

栢森	美如	北海道立総合研究機構 十勝農業試験場
平山	和幸	青森県産業技術センター りんご研究所
近藤	賢一	長野県果樹試験場環境部
三室	元気	富山県農林水産総合技術センター
西村	幸芳	大阪府環境農林水産総合研究所
矢野	和孝	高知県農業技術センター
菊原	賢次	福岡県農林業総合試験場

第 30 回殺菌剤耐性菌研究会シンポジウム講演要旨集						
発行	令和3年3月23日					
発行者	日本植物病理学会	土佐	幸雄			
編集責任者	殺菌剤耐性菌研究会	渡辺	秀樹			